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Abstract. The main forces driving black holes, neutron stars, pulsars, quasars, and supernovae dynamics have 
certain commonality to the mechanisms of less tumultuous systems such as galaxies, stellar and planetary dynamics. 
They involve gravity, electromagnetic, and single and collective particle processes. We examine the collective 
coherent structures of plasma and their interactions with the vacuum. In this paper we present a balance equation 
and, in particular, the balance between extremely collapsing gravitational systems and their surrounding energetic 
plasma media. Of particular interest is the dynamics of the plasma media, the structure of the vacuum, and the 
coupling of electromagnetic and gravitational forces with the inclusion of torque and Coriolis phenomena as 
described by the Haramein-Rauscher solution to Einstein’s field equations. The exotic nature of complex black holes 
involves not only the black hole itself but the surrounding plasma media. The main forces involved are intense 
gravitational collapsing forces, powerful electromagnetic fields, charge, and spin angular momentum. We find 
soliton or magneto-acoustic plasma solutions to the relativistic Vlasov equations solved in the vicinity of black hole 
ergospheres. Collective phonon or plasmon states of plasma fields are given. We utilize the Hamiltonian formalism 
to describe the collective states of matter and the dynamic processes within plasma allowing us to deduce a possible 
polarized vacuum structure and a unified physics.  
 
I. INTRODUCTION 
 

In this paper we present a generalized model of the balance between the gravitational and electromagnetic fields 
near or at the ergosphere of a black hole. A. Einstein, [1] J. A. Wheeler [2] and many other researchers have 
attempted to reduce both gravitation and electromagnetism concepts to the principles of geometry. As is well 
known, the geometrization of gravity has met with great success, while the latter endeavor for electromagnetism has 
met with many difficulties. In the case of a black hole, the charge of the heavier ions, by charge separation will be 
closer to the ergosphere than the negative ions or electrons. Electric field polarization will occur by its emission 
from the rotating body or system. Magnetism will arise in the vacuum induced by polarization by the rotation of a 
gravitational body such as a pulsar or black hole. This model and the general interaction between electromagnetism 
and gravity is basic and involves the details of many-body physics and the structure of the vacuum. The vacuum is a 
potential source of electrons, positrons as well as other particles when activated by a polarizing energy source [3]. 
 Our new and unique approach of developing the relativistic Vlasov equation, formulated and solved in the 
vicinity of black holes does, indeed, describe the electromagnetic phenomena of a dense plasma under a strong 
gravitational field. In the extreme gravitational conditions in a black hole, photons are trapped by being strongly 
bent by the gravitational field described by the curvature of space. Interaction between the media outside and the 
inside of a black hole can occur due to vacuum state polarization i.e. the properties of the vacuum, angular 
momentum of the black hole (Kerr metric) and charged (Kerr-Newman metric) as well as magnetic field coupling 
through plasma vacuum state polarization. 
 The vacuum rotating gravitational field gives rise to electromagnetic forces which are given by  
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where e  is the charge on the electron, c  is the velocity of light, g is the local gravitational acceleration, and   is 

the angular velocity of rotation of the body or black hole. The term g  is analogous to a gravitational 

gyroscopic term. If Esc  is the escape velocity of an electron on the event horizon of a black hole then cEsc ~ . 
The highly bent space of a black hole generates a higher magnetic and charge field often observed near a pulsar. 
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 In a black hole, gravity is so strong that space is so sharply curved that the gas of the interstellar media is 
compressed and becomes dense, and like any hot gas, emits radiation in the form of radio waves, visible light, and 
x -rays. This electromagnetic field effect across the event horizon acting through the effects of vacuum state 
polarization correlates external and internal effects and hence may resolve the information paradox so that 
information going into a black hole is conserved with charge, angular momentum and information is transformed by 
the black hole. Black holes act as an electric generator power source of quasars which emit the light of an entire 
galaxy. Of course, the black hole stores energy from the gravitational field and, as R. Penrose suggested, also stores 
a great deal of energy in its rotation. As further collapse occurs, more energy is generated to power the quasar [3]. 
 The plasma dynamics in the external region generates electric field gradients and hence current flow and induces 
intense magnetic fields across the ergosphere. The event horizon is stretched and acts as a conducting sphere with a 
resistivity, for example, having an impedance of 377 . Magnetic lines of force pass across the sphere, exciting its 
surface with eddy currents producing drag on the sphere. The lines of force do not cross the horizon but wrap around 
it and, for a rotating system, they eventually pinch off as loops. Astrophysical effects on the black holes occur 
through the effects of their excited states of the dense plasma on the vacuum. For 377 , an electric field of 377 
volts would be needed to drive one ampere of current across a square surface area on the event horizon. This value is 
chosen, for the sake of this picture, analogous to the Earth's fields. It is of interest to note that the 
magnetohydrodynamics and Coriolis forces of the plasma’s collective behaviors in this picture are similar to the 
process of sunspot formation and coronal ejection on our sun. Thereafter, close examination of black holes 
ergospheres structures may reveal regions of high magnetic flux and x -ray emissions resembling the sunspot 
activity found on our local star.  
 Of course, the motion of the magnetic field by the dynamic processes near a black hole generates an electric field 
which can give us a quantitative method to describe the energy transfer mechanisms. In the case of a rapidly rotating 
magnetized black hole, the electric field generated near the event horizon can produce enormous voltage differences 
between the poles of the spinning body and its equatorial region. As much as 1020 volts may be generated through 
field lines stretched at the event horizon, resulting in the system acting as an enormous battery. The magnetic field 
lines carry current which are driven by the voltage difference to distant parts of a quasar, which are linked by the 
magnetic field lines and the vacuum state polarization in its environment, producing a gigantic direct current circuit. 
Positive charges flow up the field lines from the equatorial regions of the surface and are balanced by the current 
from the polar field lines to the equatorial lines. The complex properties of the energized plasma feeds the jets of 
ionized gases that have been observed emerging from the nuclei of quasars, supernovae and galaxies, stretching out 
many light years into space. The plasma can act as if it is frozen around magnetic field lines, where the electrons 
undergo gyroscopic spin. As the lines of magnetic force thread through the ergosphere, energy is deposited in the 
intervening plasma, accelerating it outward against the strong magnetic field. This process is balanced by the pull of 
gravity in the vacuum of the black hole’s event horizon. Hence a balance is maintained at certain phases of collapse 
stability, where energy balance occurs. 
 The processes of plasma magneto-electrodynamics with a large magnetic field in the strong gravitational field of 
a black hole act as a generator/magnetic motor. The generated Coriolis forces in the plasma media occur due to the 
rotational acceleration as well as the gravitational field of the black hole. As we demonstrated in detail, the angular 
momentum properties result from the torque term in Einstein’s stress-energy tensor [4]. The resulting acceleration 
produces electromagnetic biases in the electron-positron states in the vacuum producing the polarization of the 
vacuum which we demonstrate here and in reference [5]. This requires that we include the magnetic field in the 
Vlasov equation [6]. It is the strong magnetic field case that gives us the dynamo generator dynamics displayed by 
galactic and supernovae black holes. Shockwave and bow wave phenomena can occur because of violent plasma 
eruptions in a strong magnetic field and bow wave phenomena can occur when the black hole is associated with a 
second astrophysical body in which the two exchange magnetic lines of flux and plasma fields [7]. 
 We and others have described elsewhere the manner in which the strong force and the gravitational forces can 
become balanced through the formalism of the relationship of quantum chromodynamics (QCD) and quantum 
electrodynamics (QED). The strong and electroweak forces are related through the quark model. This model utilizes 
the existence of mini Planck unit black holes [8]. Thus we can describe the form of the dynamics of the plasma 
energy tensor by treating its effect through the Coriolis forces. These accelerative driving forces activate the plasma 
dynamics and, hence the effect of the vacuum is manifest through the effect of the torque term in the stress-energy 
tensor. This is the manner in which the stress-energy tensor is modified which we detailed in references [3,4]. Hence 
the torque term in the stress-energy tensor actually yields the more detailed and accurate Einstein-Vlasov model 
because plasma can be utilized in this approach [9,10]. 
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 These turbulent perturbations often diffuse and propagate transverse to the magnetic lines of force.  Many higher 
order terms and a number of coupling constants are not directly amenable to an analytic approach and require 
computer simulations. Under such variable gravitational and electromagnetic conditions, patterns can emerge under 
cyclical interactions but also large dynamical unpredictable instabilities will occur. Our wave equations must 
accommodate these two cases. Some of the more detailed analytic approaches can be found in reference [5]. We 
describe examples of black hole plasma systems for stellar, and supernovae phenomena. In this paper, we express in 
detail the balance equations between the gravitational collapsing system and the surrounding plasma. Balance 
systems act in a thermo-plasma-gravitationally coupled systems that obey unique structures in space, some of which 
we present in this volume. 
 We can treat the electromagnetic field in terms of spherical harmonics as an approximation. We have solved 
Einstein’s field-curvature equation with a centrifugal term that arises out of the torque term in the stress-energy 
tensor term, and source term and demonstrate a possible balance equation at the event horizon [3,4]. The high 
magnetic field of neutron stars of about 1410  Gauss, and possibly the black holes also act to direct and repel the 
plasma against accretion at the event horizon surface. We find soliton or magneto–acoustic plasma states as 
solutions to the relativistic Vlasov plasma equations solved in the vicinity of a black hole ergosphere. 
 
II. DYNAMIC TURBULENCE AT THE SURFACE OF THE EVENT HORIZON AND THE BALANCE 

EQUATION 
 
It is clear that the interface at the surface of a rotating neutron star, pulsar or black hole and the surrounding media 
can be highly turbulent. Large energy, thermal, charge, matter and angular momentum charges occur. Excitation 
modes in the plasma media can become quite large. For small excitations, the standard approach is to decompose the 
turbulent modes into a sum of linear modes, but that is not possible in our case because the system is so nonlinear. 
 In high excitation phenomena, which exceed the thermal energy, the nonlinearity condition requires that the 
various modes of excitation couple with each other in a variety of ways. Let us consider an example of a wave 

resonant mode coupling for wave vectors 
1k  where   is the wavelength and wave amplitude  kU . The 

condition for the wave resonant mode coupling we can express as      kkkk    having a dominant 

frequency,   which is satisfied for wave vectors, k  and k . 
 Turbulence theory yields a nonlinear wave kinetic equation of the form for the wave amplitude  
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where A ( kk , ) and B( kk , ) are the coupling coefficients which describe resonant and non-resonant modes of the 
coupling processes, respectively, and the coefficient   is the linear growth rate. For 1/   we have the weak 
turbulence theory. In our case we will be dealing with the high turbulence theory 1/   which carries more 
coupling terms and hence is more complex. 
 Properties of the media of the plasma in the balance equation occur at the approximate region of the event 
horizon. Our balance force equation for black hole dynamics, in complex interactions, relates the gravitational and 
electromagnetic force. The dominant force is the major attractive force toward gravitational collapse. Opposing 
forces exist for the Kerr-Newman system in which rotational centrifugal and Coriolis forces are driven by spin and 
charged particles dynamics and the torque term in Einstein’s stress-energy tensor. In general, we will not concern 
ourselves with individual particle interactions and deal primarily with collective particle dynamics. Although these 
collective particle processes arise out of individual particles and their mass action, currently, much is known about 
their mass action, and we can utilize these formulations for our present purpose. 
 Dynamic black hole physics involves thermodynamic processes as well as electrodynamic and gravitational 
collapse phenomena. In considering the Kerr and Kerr-Newman solutions, we can address the concept of radiated 
and absorbed energy in a collapsing system. If a superdense star or stellar cluster is collapsing, rotating and is 
charged, the possibilities of complex matter near the black hole is much more complicated and hence is a much 
more interesting dynamic system. In general, such a system is much more observable, as an x -ray and visible 
source, because a finite rotating event horizon exists along with a “tidally acting” ergosphere. 
 In general, it is considered that the net charge on stellar and galactic collapsing systems is relatively small but 
extreme internal charge separation can occur. The major phenomena, however, is the rotation of the system, hence 
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the Kerr solution is often utilized. The angular momentum of the system generates Coriolis type forces and these 
types of forces drive convective currents. Some examples on earth are the ocean and ionospheric currents as well as 
magnetospheric dynamics. Also, sunspot migration is affected by Coriolis-like tides and plasma phenomena. This 
too occurs in stellar and quasar structures. Similar type forces can drive stellar matter plasmons near black holes 
resulting from ergospheric tidal action. Patterns of material and current flow can occur over Northern and Southern 
hemispheres which may be necked (or pinched) at the equator [6]. Radiative processes can be expressed by the 
Stephan-Boltzmann equation, where the energy is related to the temperature as 4 a  and  
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where R  is the gas constant and v  is the frequency. The Boltzmann constant is ARK /  where A  is 
Avogadro’s number [7]. 
 The torque term in Einstein’s field equations generates rotations and spin driving forces such as the Coriolis 
forces. Analysis of the spin effects of the black hole is key to the understanding the surrounding plasma dynamics. 
Centrifugal and Coriolis forces in the plane of rotation affect the surrounding plasma spin effects, expelling the 
plasma, opposing the accretion process near the event horizon [8]. The detailed role of these forces requires 
extensive computer modeling. Progress has been made by Feder and others [9]. These driving forces can be 
augmented by large magnetic fields as well as the strong attractive forces of ultra dense matter of the black hole. 
These systems are comprised of the rotating black hole and its surrounding plasma gas media. We can form a crude 
analogy to the ionospheric media surrounding the earth, its gravitational field and “steady state” magnetic field.  The 
charged ionospheric and magnetospheric layers are affected by these forces, in addition to the temperature 
differential from equator to poles, and under seasonal variations. Coriolis forces and convective currents are driven 
from west to east in circulating loops [6]. Solar wind activity also acts as an external driving force and although 
these patterns are complex, they are statistically approximately repeatable. Similar processes can be applied to the 
solar and stellar dynamics surrounding media composed of energetic plasma. The outermost loops are driven by 
centripetal (gravitational) and centrifugal (rotational) forces. 
 
III.   THE BALANCE EQUATION IN THE VICINITY OF A BLACK HOLE ERGOSPHERE 
 
A black hole system undergoing collapse in a charged rotating system is surrounded by a plasma field. A balance 
between the energetic plasma field and the gravitational forces exists. As the gravitational collapse moves inward to 
the black hole center, the surrounding plasma, through its magnetic stress field, repels from its black hole event 
horizon. Furthermore, the springiness and elasticity of the magnetic lines of force in the excited plasma states is 
caused by the centrifugal rotational and Coriolis forces, balanced by the gravitational collapsing forces. 
 Hence we can introduce the gravitational force in the Vlasov equation to balance and repel the electromagnetic 
force. The curl of the field gives a rotational component and the plasma field is fully charged so that we must 
consider a Kerr-Newman rotating, charged black hole system. It is the plasma field excitation modes that make 
collapsing black holes visible and hence detectable.       
 We develop a modified form of the Vlasov equation in a gravitational field. From this formalism, we develop a 
balance equation. We find solutions to our modified Vlasov equation which describe coherent, collective states that 
polarize the vacuum and hence form a preferred direction in space. This picture relates to our spacetime torque and 
modified spin model of the Haramein-Rauscher solution [3]. Preferred directions in space are not precluded by the 
structure of Einstein’s field equations but were thought by Einstein not to exist. Mach’s Principle, however, may 
yield clues in regard to a preferred reference field or frame. We address this issue in more detail later in this paper. 
 We detail the formalism of the balance equations including the thermodynamics of black hole physics and 
external black hole plasma dynamics. Radiative Stephan-Boltzmann terms and convective rotational motion is 
considered as well as conductive properties of the plasma. These properties are significantly affected by the 
nonlinear properties of the media and the polarization of the vacuum. Consider a nonlinear, coherent, collective 
phonon or plasmon state in a plasma field. This field is described by the solution of a nonlinear form of the 
dynamical Vlasov equation. These solutions relate to the coherent states, are soliton like, and are observed as 
phonons. 
 The Vlasov equation describes the plasma state of a fully ionized gas in an electromagnetic field. Essentially 
these conditions are a specialized and extended case which has parameters not described by Maxwell’s equations 
alone (Maxwell’s formalism does not deal with the nonlinear gas dynamics of a fully ionized plasma and non-
Hertzian wave phenomenon). The function that is a solution of the Vlasov equation is expressed as a distribution 
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function, if  for species i  which is a function of space, momentum and time. The equation of Boltzmann and the 
Fokker-Planck in phase space are kinetic equations [10]. The kinetic equation is a self-contained equation for the 
distribution function. The Fokker-Planck coefficient terms express and reproduce the Balescu-Lenard collective 
collision terms giving us an expression for collision effects [10]. The usefulness of this approach was shown by 
Vlasov [11]. 
 Our balance force equation for black hole dynamics relates the gravitational and electromagnetic forces. The 
dominant forces are the major attractive forces towards gravitational collapse. The opposing forces exist for the 
Kerr-Newman system in which rotational centrifugal forces are driven by spin and charged particle dynamics. In 
general, we will not concern ourselves with individual particle interactions and deal with collective particle 
dynamics primarily. Although these collective particle processes arise out of individual particles and their mass 
action, and since, currently, much is known about their mass action, we can utilize these formulations for our present 
purpose. Note that both transverse and longitudinal modes of excitation in the plasma are possible. 

We can derive the equilibrium state of the balance equation from the kinetic equation for the plasma using 
the Fokker-Planck equation in momentum space. Quantum kinetic properties can be included in this formalism for a 
system of particles with Coulomb interaction which was derived by Landau from the Boltzmann equation [12]. The 
Debye length sets a limit on the distance correlation of particles and is described by a system formulated in terms of 
a series to have a cut off and to diverge to infinity and hence the Debye length acts as a cut off approximation to 
avoid nonrenormalization. The divergencies over long distance excitation of which we primarily deal with, in a 
plasma, are longitudinal or acoustic or plasmon modes. 
 For a homogeneous distribution of charged particles in a plasma, most oscillation is produced by the light mass 
charged electrons of the plasma. For diffusion and dynamic friction we can write the equation  
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where, in this specific case, 3,2,1,   and where B  and A  are respectively the coefficients of diffusion and 
the coefficients of dynamic friction. The friction concept is part of the balance equation dynamic. Both of these 
coefficients can be written in two parts, one for large and one for small energies of charged particles. The 

expressions for these two coefficients for .VibB  and .VibA  as .. VibColl BBB    and .. VibColl AAA   where 
“Coll.” stands for collective and “Vib.” for individual vibrations 
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where p  is the momentum, t  is the time, and k  is the wave number 
2k , and L  is the Langmuir 

frequency given as mneL /4 2  , and K is the Boltzmann constant. The quantities .VibB  and .VibA  are 0  

only when cv   in a media so that Cherenkov radiation exists in a longitudinal plasma for kmp L //   and m  

is the mass of the particle that is excited. Only plasma waves having a wave number pmk L /  can be excited as 
a result of deceleration of the electrons with momentum, p . The maximum value of the wave number is determined 

by the magnitude of the Debye radius neKTrD
24/  . The deceleration of the electron due to radiation of the 

longitudinal waves is possible only under the condition that their velocity is higher than the mean thermal velocity. 
The dynamically active particles of the media are the lighter electrons, rather than the ions.  
 Integration over wave numbers kd  along the motion and using only terms in    as taken to be different 
from zero we have the following expressions for the diffusion coefficients. We have  

6.                             



T

L
Vib

v
v

v
KTeB ln2

3

2
.

33   and 
v

meBB LVibVib

2

22
.

22
.

11


  for m
pv    

and 1, v  is analogous to the x coordinate, 2, v  is analogous the y coordinate, and 3, v  is analogous 
to the z coordinate. We express the deceleration force, F , acting on a charged particle due to longitudinal waves so 
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that upon integration of the equation for the magnetic field, B , as 
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 In terms of thermodynamics the equations in terms of if  and iF  for species iv , the electron is essential to 
assure that the plasma vibrations or plasmons and the plasma particles surrounding the specific particles are initially 
in the state of thermodynamic equilibrium. This point is a key in that what we must construct is a thermodynamic 
equilibrium between the fully ionized electric charge dynamics and the gravitational attraction of the black holes, 
and we must construct a collective vibrating medium which comprises a self-consistent field. For long waves, the 
damping is small, which occurs in the low frequency range. Both longitudinal and transverse components exist and 
their relative significance depends on a number of factors such as the temperature, pressure, density and degree of 
ionization of the media as well as externally applied and internally generated fields and their coupling. Ion and 
electron properties such as pressure, dielectric constant and conductivity may be different under the conditions 
where quantum electron interactions occur [5]. Polar and nonpolar neutral members may also be present. 
 At sufficiently large wavelength and low frequencies, as in interstellar and stellar regions, there are longitudinal 
vibrations of the electron gas. In these frequency regions, we find that there are similarities between these 
vibrational spectra of the quantum plasmas and our own ionosphere. This is the case where the Fermi energy, F , 
effects dominate the plasma rather than the temperature. Near the horizon temperature effects dominate in more 
energetic processes. 
 
IV.   PLASMA COHERENT EXCITATION AND THE VACUUM STRUCTURE 
 
Our work may provide a new picture of a structured vacuum which relates to single particle and collective coherent 
particle state interactions. This active plasma field and its electromagnetic properties are in balance in the 
gravitationally collapsing process in and near a black hole. We will detail these processes in terms of first, the 
quantum electrodynamics of dense plasmas, second, the intense relativistic gravitational field near a black hole event 
horizon, and third, the radioactive fields and other thermodynamic properties of black hole, supernovae, pulsar and 
quasar phenomena. 
 We consider the properties of dense plasmas in the vicinity of strong gravitational fields and their collective 
coherent states. We must include particle-particle and particle-field coupling in our eventual formulation of a 
metrical space and stress-energy tensor in Einstein’s field equations. Work has been conducted on the Einstein-
Vlasov equations [13] which is a good start but does not include the many body processes of dense plasmas 
including the effects of particle-particle, particle-field and particle-field coupling to the structure of the vacuum plus 
self energy states. Through this picture, the properties of a structured vacuum will emerge and hence, we can 
understand the fundamental role of the vacuum in forming and shaping these processes. 
 In the region near the outside of the event horizon of a black hole, we can no longer consider the approximation 
of a collisionless plasma. This approximation is usually made for describing man-made and natural non-dense 
plasma phenomena. When collisions are taken into account, the problem becomes more complex but more 
interesting. We must include quantum interactions and vacuum state polarization in this many-body problem [5]. 
Superdense, fully ionized plasmas occur where we have strong gravitational forces surrounding, and in, a black hole 
dynamical system. Although the plasma media is fully ionized, such a system has been termed a “solid-state” plasma 
where an analogy is made between plasmon and photon collective oscillations of the plasma media [5,14]. Near the 
event horizon, the plasma is superdense where quantum effects occur. The plasma-particle interaction must be 
properly treated quantum mechanically when the electron plasma-wave phonon energies are comparable to, or 
greater than, the mean random electron energies, and/or, when the phonon momenta are of the order of magnitude or 
greater than the average electron momenta in the plasma. This will lead to a new formulation of quantum gravity. 
 Whether classical or quantum plasma treatment is considered, the collective properties, as well as the single-
particle properties must be considered. The collective properties of the plasma become important when it interacts 
with an external or self-generated radiation field. This occurs in the case where the electron plasma frequency,  , 

is of the same order of magnitude, or exceeds, the operating radiation frequency , i.e.   . The value of   is 
of the order of 105 Hz or greater. A plasmon is defined as a collective mode of oscillation of a plasma gas and a 
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phonon is defined as a collective mode of oscillation of a solid such as a crystal lattice and usually associated with 
acoustics. The solid state high density plasma systems have both plasmon and phonon collective modes of 
oscillation. External and self-generated electromagnetic fields can also act to produce excitation modes. In a sense, 
the phonon in a superdense solid state plasma acts like a charge separated phonon made in a crystal. The criteria that 
distinguish the properties of a plasma, as to whether it is classical or quantum mechanical in nature, can be defined 
in terms of three fundamental lengths of the electron gas. These definitions hold for the first approximation of a one 

component plasma and are the classical length, 2e , the Debye screening length,   212 /4 
  eD , and the 

thermal deBroglie wavelength,   212/  m  , for   defined as KT/1 , where K is the Boltzmann constant. 
From these three quantities, we can define two dimensionless parameters. They are the classical parameter 

D

eA 
 2

  and the quantum parameter D / which is a measure of the existence of quantum effects. For a 

quantum plasma 1 , and in the classical limit,   1,0,0  Ah  . We must also take into account the 
collective behavior characterized by the plasma oscillations since charge screening effects are an automatic aspect of 
the electron plasma gas. We compare the plasma properties for the usual classical limit to that of a high density 
plasma in the quantum limit. This is appropriate for the problem we are addressing of a plasma field surrounding a 
black hole. 
 
A.  Plasma Oscillations and a Description of Collective Behaviours  
 
The collective behavior of electrons was developed by Bohm and Pines and both the classical and quantum 
mechanical treatments were given [15]. The organized behavior of a high-density electron gas results in what is 
termed “plasma oscillations” and is treated by use of the collective description [16]. As opposed to the usual single-
particle formulation, the collective model describes the long-range correlations in electron positions as a 
consequence of their mutual interactions. The collective modes of the plasma oscillations are called phonons or 
plasmons. 

 The self-consistent field methods of Hartree and Fock [17] neglect the long-range Coulomb forces and hence are 
not adequate for cases in which there exist high particle densities where electron-electron interactions become 
important. The plasma oscillations come about through the effects of long-range correlation of electron-positron 
pairs due to Coulomb interactions [18]. In the treatment of plasmons one considers a particular Fourier component 
of the average field as proportional to exp   trki  . For small amplitudes, a linear expansion is valid. The 
condition for oscillations to continue to occur is that the field arising from the particle response must be consistent in 
phase with the field producing the response. 

 There are certain limitations on the collective description of the electron gas in terms of organized longitudinal 
oscillations due to the fact that these oscillations cannot be sustained for wavelengths shorter than the fundamental 
Debye screening length, D . This critical distance can be expressed in terms of the distance, with a mean thermal 
speed,  , traveled during a period of one oscillation:  

 

7.                                                             //4
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 For longitudinal waves, the approximate dispersion relation, for long wavelengths and small frequency [14,15] is  

8.                                                               





ee m
k

m
e 22

2 34
   

 
where   is the frequency of an imposed uniform electric field, k is the wave-number  /2k , where   is the 
wavelength,   is the electron density, KT/1 for K , the Boltzmann constant, and T  the Kelvin temperature. 
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B. The Many-Body Problem and the Soliton Model of Plasma in Collective, Nonlocal and Coherent States 
 

At a temperature of the order of 104 to 105 K , in a non-fully ionized plasma, energy will be transferred to neutral 
gas particles through elastic collisions. If the plasma is subjected to an externally varying electric field, an acoustic 
wave is generated in the neutral gas. Also, if the electric field is held constant, the electron density can be varied by 
an externally applied acoustic or sound-like wave. When the applied frequency of the plasma parameters are held in 
a proper relationship, a coupling of the electron energy to the acoustic wave can occur and can create a positive 
feedback amplification which results in acoustic-like waves manifesting as oscillations. We define these specific 
states as an “acouston”. Acoustons can carry charge, unlike phonons. Sometimes these excitations are termed 
excitons. This can be the case for both internally and externally generated acoustic or acoustic-plasmon states [5,6]. 
 Examination of these acoustic-plasmon or acouston growth modes and collective states that result from such an 
amplification are important in determining the conditions for spontaneous excitation of a normal mode of vibration 
in a plasma system. The electron density is key to the determination of the acoustic pressure field because of the 
coupling of the electrons to the neutral gas in the case of cooler plasmas. The speed of this ion-acoustic longitudinal 
wave is determined by the inertia of the ions and the “elasticity” of the electrons. In the presence of a magnetic and 
gravitational field, the plasma becomes non-isotropic and non-homogeneous.  
 It is through nonlinear pulsed electric and magnetic fields, timed at precisely pulsed non-uniform modes, which 
either enhance or diminish the growth of these acoustic modes. It is obvious that the collective plasma behavior is 
the mechanism for plasma collective state formation and hence, these modes can be enhanced or diminished by the 
form of the external or internally generated electric and magnetic fields and the geometric configurations. All these 
factors occur optimally to generate the dynamo effect in black holes which involve the collective nonlinear 
processes within the plasma. Growth of the so-called plasma instabilities, which we identify with a coherent soliton 
state, convert forms of energy from externally applied fields into coherent charged plasmon excitations [5]. Debye 
demonstrates that the thermal vibrations of a crystal lattice can be considered as traveling acoustic waves and that 
the transport properties of a metal, such as with electrical and thermal conductivity, are governed by the scattering of 
electrons from these vibrations. Also sound waves in a solid can be scattered by electrons. This is basic to the 
Vlasov model. 
 The lepton number for an electron in its lowest quantum state in the geometry of the gravitational force of a 
black hole can act as a ground state in the dynamics of the Freidman universe derived from the Schwarzschild lattice 
universe [19]. This model derives its origin from solid state physics. The dynamics of particles and fields is 
expressed for the Schwarzschild geometric condition. From this simple picture, the entire dynamics of the closed 
three-sphere lattice universe can be used to describe the Friedman model. We detail the Lindquist-Wheeler model 
[19] elsewhere and discuss this model’s application in describing vacuum structure. We discuss this model in more 
detail in Section E. Ultrasonic waves with much longer wavelengths,  , than the average mean free path, e , of 
electrons are not scattered by the wave but ride up and down on the wave. At the lower temperature 
superconductivity state then, e  is much longer with the onset of the effect of Cooper pairs and there is a sizeable 
attenuation in ultrasonic waves in cold regions of astrophysical space. We will present the relationship of cold 
plasma interactions and fluid dynamic-like properties [20].  
 Resonance effects can be created by magnetic fields which vary in magnitude due to the periodic nature of the 
field of the electron, which is possibly generated by the vacuum lattice structure [5,20]. The topology of the Fermi 
surface governs the behavior of the electron in a magnetic field. The existence of the Fermi surface occurs because 
of the high density of electrons so that the Pauli exclusion principle dominates, wherein the electrons form a highly 
degenerate system in a quantum system for high density plasmons. The electron states are filled up to a certain level 
which is the Fermi energy. The Fermi surface is the constant energy surface of the Fermi energy, mapped out in 
momentum space [20]. Periodic forms exist within the surface due to the periodic nature of the lattice. 
 Again, we proceed from the usual definitions of the plasma frequency: 

9.                                                                   2
12 /4 eme   

where   is the electron density and em  is the electron mass. The Debye screening length is given 

as   2
12 /4 

  eD , where   is the Boltzmann temperature defined as KT
1 , K  is the Boltzmann constant 
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and T  is the Kelvin temperature. The thermal deBroglie length is given as   2
1

2/  em  . Quantum plasma 

properties dominate for 1 , where D / . We can write  as 

10.                                                                      
 

  

 In the collective description of our electron gas, the organized longitudinal oscillations cannot be sustained for 
wavelengths D   and occur only for coherent lengths D   which comprise the quantum picture. If we 

define the critical distance with a mean velocity   traveled in one oscillation, we have  /D . We can define 

the wavelength for collective behavior as  /cc   where c  and where c  is the velocity of light. That is, 
if the communication or information transfer velocity is large, then collective states will dominate. 
 We considered a simple example of an oscillatory imposed field  txkieEE  0 . If the frequency of 
oscillation of the field is high, then we must include the quantum mechanical properties of the medium, and when 
the photon energies are of the same order of magnitude as the electron rest energies, then the quantum properties of 
the radiation field must be included (see section VI). For the case of a high density plasma under low and high 
temperature conditions, we define a dimensionless quantity, sr , which we will take to be small or of the order of the 

Debye screening length, divided by the Bohr radius. We define arrs /0  where 0r  is the interaction spacing of 

the order of D  and a  is the Bohr radius. The volume per electron is 3
03

4 r . Terms in 2
1

sr
 are proportional to 

the electron density and 2
sr  is proportional to 2e , the electromagnetic coupling constant. If  
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then the Fermi energy is given as  

12.                3
2

4/95
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and the maximum electron momentum is given as  

13.                    3
14/9k  0/ r  

The Fermi energy levels are defined in terms of the vacuum state. The collective correlation energy is proportional 
to F . The ground state 0  is the state of no electrons or holes and has the eigenvalue  




11k

iF k  for the 

momentum, ik , of the ith particle. 
 To consider both collective and single-particle motion, we separate the density of fluctuations of the plasma 
media into two parts:  kkak   which satisfies the oscillatory equation of motion 02    kk  where 

k  represents the collective component associated with the oscillations, and the density k  represents a 
collection of individual electrons surrounded by a cloud of charge which screens the field of electrons within the 
Debye length. This is our basic wave equation. 
 The ground state 0  then, in this model, is analogous to the vacuum state and any additional particles or holes 
with their polarization clouds are called quasiparticles. The screening aspect of the electron gas in terms of a 
renormalization of 2e , is automatically accounted for when collective behavior is considered. Coulomb divergences 
occur and thus the electron interaction must be renormalized. This approach is basic to the quantum plasma model. 
 The plasmon state is a resonant cooperative excitation of the density field which can decay by giving up its 
energy to various multiple excitations which are less correlated and coherent. This is the definition of the usual 
plasmon state. Also, collectivity of the plasmon state may be increased by the coupling of the excitations to the 
electron field and forming a state of greater coherence and resonance. This may be seen as soliton-like behavior. The 
plasmon and soliton states have no counterpart in a system of non-interacting particles where densities are extremely 
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low, such as in interstellar space. The plasmon develops from a set of non-stationary density fluctuations. The 
plasmon excitations are acoustic modes which are longitudinal in their nature, and the soliton coherent states 
represent the mechanism of coherent growth through the process of nonlinear coupling which appears as plasma 
instabilities, but in reality are stabilities in terms of collective coherent behavior. However, since these states disrupt 
the plasma as observed in laboratory experiments, they are called instabilities. 
 Wave mode coupling is represented by pair creation or destruction of a plasma quantum. The processes of virtual 
and real pair production have an important effect on all plasma properties, such as electrical conductivity, dielectric 
constants and other electrical properties, as well as the spatial distribution of the gas itself. The electric parameters 
of the system couple directly to the external field and can thus be influenced by these fields. The spatial temporal 
plasma modes of excitation are also affected. External fields resonating with the internal plasma properties hence 
determine growth or decay of coherent modes. The key to the plasma coherent collective coupling process is 
expressed in the soliton formalism. These states can be maintained around specific conditions of black hole 
dynamics and give rise to certain structures in space such as supernovae. These astrophysical structures are 
maintained through the coupling of internal and external fields, both electromagnetic and gravitational. The coherent 
states of the plasma hence find a strong analogue to the exciton models in semiconductors and also the coherent 
excitonic modes in superconductivity, in which the Bardeen-Cooper-Schrieffer (BCS) formalism is given in terms of 
single particle and collective properties [21-24]. These states occur in interstellar space and near astrophysical 
systems where temperatures are near absolute zero. 
 The field-particle interaction is formulated in terms of the creation-destruction of particle-hole interactions which 
give rise to information and energy transfer between collective modes of the media arising out of single particle 
coherent excitations. These collective coherent plasmon modes occur because of the vacuum structure where a 
variety of energetic modes exist that access the electron-positron excitation modes of the Fermi sea model of the 
vacuum described herein. The degree of the effect of the polarized vacuum depends on the plasma density. Near a 
black hole, vacuum effects are large. Some of these excited states are called self-energy states. These collective 
states yield information about the structure of the vacuum itself (see section X). 
 
C.    Plasma Magnetohydrodynamics for the Vlasov-Maxwell-Poisson Semi-Classical Treatment 
 
We proceed from Maxwell’s equations for a system in an externally applied and internal field with the usual 
continuity equation for the Vlasov-Maxwell equation. Let us briefly outline the formalism so that we have a context 
for the quantization of the plasma and the description of the soliton plasma collective coherent states. 
 The electrodynamic processes of the plasma can be described by the use of the approximately collisionless 
Boltzmann or Vlasov equations that predict the damping of plasma oscillation modes. We will treat influences of 
collisions later. This damping process is the standard Landau damping where, in the quantum formalism, a plasmon 
or phonon or quantum of plasma oscillation decays, or is annihilated, into a one-particle final state or a collisionless, 
or nearly collisionless damped state. The condition for collisionless Landau damping is e i    where e  is the 

electron temperature and iT  is the ion temperature. Needless to say, this picture does not carry the formalism of 
collective coherent processes, such as ones which include growth modes or coherent states of the plasma. 
 Let us start from the continuity or conservation of charge equation of the form  
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where   tvrf ii ,,  is the distribution function for the thi  particle or state. We can identify if  with the density of 
series i  [22]. 
 We write Maxwell’s equations in their usual form as  
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where the momentum is mvp   where v  is the velocity, c  is the velocity of light, and the current density is 

given as  fdv  and the current as  fdvvJ ˆ . Also E  and    where the electric field is the 

gradient of the potential,  . The constituent equations are 

16.          20 c
BvBvEE 

   and   20 c
EvEvBB 

   

 In dealing with the collective modes of a two species plasma, in  and jn  we use Poisson’s equations  

17.             ji nne   442   

where   is the potential and in and jn  are the number density of two species. In terms of thermo energy potential 
we can write  
18.              KTeee 42    
where e  is the charge of an electron and the exponent is to the base e  and K  is the Boltzmann constant and T the 
temperature in degrees Kelvin. The spacing of particles in the plasma is given as D , the Debye length between 

particles as 7 /D T h   for high temperature plasma, then the density n  yields about 1010 to 1016 particles/cm3. 

The interstellar plasma electron density is about 1  to 10 3/ cmne  at a temperature range of 102 to 104 KT o
e . 

Stellar plasmas have densities of about 1015 3/ cmne , having a temperature range of about 107 to 109 KT o
e . Note 

that the black hole density is many orders larger. This is the reason gravity and electromagnetism as well as the 
strong force, can come into balance. 
 The Poisson equation is given as  

19.              vdtdtvrfc ii
322 ,,4   

for velocity and temporal variations of  tvrf ii ,, . We use the form if  to represent  tvrf ii ,, . The usual 
Lorentz force on particle i  is given as  
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where E  and B are induced electric and magnetic fields in the plasma from external influences as well as internal 
plasma interactions. 
 Electromagnetic fields in the plasma medium can be described by the Vlasov-Maxwell-Poisson equations. 
Starting from tBcE  //1  and taking the curl of both sides we can then identify 

eJtEcB  //1  so that we have  
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We assume that the time variation operator commutes with the del curl operator. Also we identify the current eJ  

with if  as  ie fvdvJ 3  in velocity space. This gives us 
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The fifth relevant equation for our electrodynamic problem is the momentum conservation equation, for effective 
mass im  which is given as  
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for E , where in the simplest form f  or if ,  tkri

ki eff 



 0,
 for normalization constant 0f , and   is 

taken as an effective electric and/or magnetic potential of the form of 11ee  for KT/1 , the Boltzmann factor, 

and iP  is the pressure of species i , which we neglect for the first approximation. For our calculation for a specific 

geometry, we need to include the iP  term for the plasma pressure. We will include this term in our calculation 
which involves the specific geometric configurations for natural and laboratory setups. 
 We use our magnetohydrodynamic (MHD) equations to determine acoustic resonant states in analogy to a 
classical soliton theory. We will also include quantum interactions of the electron-acoustic modes which also form 
coherent states. The role of the vacuum is also taken into account. The structure of the MHD system and also the 
usual hydrodynamics gives rise to simple coherent states with soliton-like properties. Quantum interactions enhance 
the stability of these states and the vacuum acts as an energy flux source. This source acts as a Prigogine system, 
giving rise to self-organizing properties of the media [23]. We will examine these issues in more detail in later 
sections. Note that we can identify the distribution function if  with the particle number density in  for particle 
species i . 
 
D.  Coherent Plasma States and Soliton Solutions to the MHD Equations  
 
Using the MHD equations in the semi-classical approach given in the previous subsection, we will now demonstrate 
how the system of a fully ionized gas can form coherent resonances. These resonances are described as solitary 
waves. We will see that the solutions to the MHD equations do indeed give us soliton solutions. We examine two 
such solutions under different conditions, such as the velocity of propagation in the plasma, the electron and ion 
temperature, plasma frequencies, and external and internal field conditions. The treatment gives rise to a very good 
understanding of the formation of growth stability modes and collective states in the plasma and the whole issue of 
the soliton coherent state formulation and application. 
 In internal stellar and near event horizon conditions, temperatures can occur at hundreds of million degrees with 
plasma pressures of millions of gm/cm2. Under these conditions, fusion can occur involving four main reactions 
with the release of exothermic energy where hydrogen is processed into helium [25,26]. Magnetic fields contain and 
control these conditions and capture highly energetic charged particles. Electrons can have energies of eV510 and 
spiral around the lines of magnetic fields in gyroscopic helical paths. Gravity also acts as a plasma containment 
system in the sun and near black holes and other astrophysical systems. For example, under stellar conditions 
magnetic fields of a half-million to a million Gauss are present at over 100 atmospheres of pressure. Often these 
conditions can be controlled and/or affected by the dynamics of the large magnetic fields. 
 Under these conditions the plasma acts in a collective coherent manner in terms of nonlinear collective quantum 
states. These collective states involve nonlocal effects through the magnetic and gravitational fields and the vacuum 
state polarization. We can characterize these states in terms of solitary wave properties or soliton waves [27-29]. 
Turbulence near black holes in a dynamic state of formation can disrupt or enhance these modes and restabilize once 
conditions become more of a steady state. 
 We can calculate the speed and size of ion-acoustic solitons in the plasma. We consider a two-component 
nonisothermal plasma, ie TT  , and low magnetic field, B , where 

24.              1/8 2  BnTe  

where an external magnetic field is applied for an angle   between B  and the wave vector, Dk /1 , where 

D  is the Debye length. We use the usual quasineutrality condition and include effects of strong nonlinearity. 

Charge separation effects become important when pici    where ci  is the ion-cyclotron frequency, and pi  is 
the ion plasma frequency, thus the ions move in concurrent paths. This condition occurs near to or at plasma fusion 
conditions. 
 We can describe the plasma motion by the usual set of plasma equations; for the continuity equation, 
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and the ion number density is given as eKTe
e ennn /

0
  for ion mass, im , electron charge, e , velocity, v , and 

  is the electric potential. The ion gyrofrequency is given by    zcmeBg ii /0  for zBB ˆ0  and 0n  is a 
constant. 
 We form a differential equation from the above three equations and find soliton solutions for certain conditions 
on relevant parameters. Solitons in the plasma density probably can be found for cos/ sp vv  where pv  is the 

speed of the plasma soliton and sv  is the ion-acoustic velocity. A few others have taken similar approaches [29,30]. 
 The size of the ion-acoustic soliton in a magnetized plasma is characterized by 
27.               isi gv  /   

where  ig  is the ion gyrofrequency. The ion acoustic speed is given as   2/1/ ies mTv  . From the continuity 

equation for tv  / , for the time variation of the number density we form 
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where zvyvxvv zyx ˆˆˆ  . Then we can write the plasma equation for tv  /  as three coupled equations: 
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and  
31.             spzs vvvv /   . 
These dimensionless forms of the equations allow us to write one differential equation for the above equations, as:   
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Upon integration this equation can be written in the form of  
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The  0/ nn  term occupies the role of a classic particle “potential well”. The form of  0/ nn  is quite 
complex. Lee and Kan explore the form of   and give analytic and numerical solutions [30]. Ion acoustic solitons 

exist for 1/cos  sp vv  and the normalized electric field, 0E  for the case where 0nn  , where  
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Lee and Kan’s approach yields  
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where   and   are adjustable parameters. These parameters can be varied and some give coherent collective 
soliton states but are near unity. They can be affected by gravitational fields. Shukla and Yu have shown that finite 
amplitude ion-acoustic solitons can propagate at an angle to an external magnetic field in a plasma [31]. 
 If we make some approximations, we can see more easily how we can obtain the Kosteweg-deVries equations 
[27]. Let us first take a one-dimensional space dependence only, for example,  
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becomes  
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and for the continuity equation, we have  
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where we ignore the ion-gyrofrequency term of  ig  and U  is a function of the electric potential,  . For charge 
neutrality then we can write  

41.                                                              
 

x
nn

nnx
vv

t
v










 0

0

/
/
1

 

Charge neutrality puts a limit on the unlimited increase in an initial disturbance of the media which is damped by the 
presence of charge limits and the buildup of short-wave-length components of the disturbance. 
 Let us determine the associated wave solutions. We can define the Mach number sCv /0 , which is the ratio 

of the pulse speed to the ion-acoustic speed. Note the similarity of   to our earlier ratio sps vv /  where psv  is the 

speed of the plasma soliton and sv  is the ion-acoustic velocity. Essentially, ss Cv  , and we can identify psv  with 

0v . Let us define a variable tx  . 
 For isolated pulse-like solitons we have the following boundary conditions  
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 Then 0U , 0v , 1/ 0 nn  and  
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Integrating the equations for tn  /  and tv  /  using the definition tx  , we obtain  

44.                                                 vnn  // 0  and    Uv 222    

where we have used the limit of equation (42). We can define eKTeU / . We will now assume the potential   

arises from electrostatic forces only or xE  /  in this case with no applied magnetic fields. For the Poisson 
equation,  
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We can write  
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We can substitute equation (43) and (44) into the expressions for   and U  and obtain  
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where C  is a constant of integration, which we take to be zero. 

 This expression is similar to that previously obtained (equation (33)) for
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but is less complex because of our approximations and therefore the variable   is a simpler expression than that for 
s , etc. For Mach numbers slightly greater than unity, we obtain compressive solitary solutions which correspond to 
small amplitude waves with 1U . 
 We can expand the above expression in orders of U and   and retain leading order terms only. Then the above 
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which we now integrate  

49.                                                             



  2

1
2

2
1sinh3 U   

again for tx  . We find  3maxU  for the maximum pulse and we used the definition 

110   . We see that the solution U  is indeed the form of a solitary wave! The half width of this wave 

is   2
1   [6]. 

 This solution form is a more approximate form than our previous solution  0/ nn , which indeed can also give 

soliton solutions [6,27,29]. We can now demonstrate that the soliton U  satisfies the Korteweg-deVries equation. 
The variables 0/ nn , U  and v  are series expanded and the lowest order terms are retained. Second order terms are 
defined as a set of variables rather than as x  and t , and are used to define local disturbances. We return to the 
original set of equations for   tnn  // 0  and tn  /  and Poisson’s equations. Then we can obtain 
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where  tfn  and )(xfn . The above equation is the Korteweg-deVries equation [30]. We can define 

 txc  2
1

  and t2
3

   for 1  , in terms of the Mach numbers. 
 If dissipative processes occur, such as Landau damping, or magnetic fields are present, the above equation is 
modified. Equation (50) has solutions:  
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and solitary wave solutions occur for what we term the “pseudo velocity”, 0c . This velocity of propagation of 
the soliton wave depends on the state of reference frame considered for the system, that is, fixed or rotating. If we 
proceed from the quantum field theoretic approach to MHD and then proceed to find soliton solutions, we will see 
that these solitons are solutions to the sine-Gordon equation rather than the Kortweg-deVries equation. As we have 
seen elsewhere, the solution form will be in terms of a sech2 solution since this equation is a representation form of 
the classical Korteweg-deVries equation and quantum sine-Gordon formalism. 
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 The excitation modes of the plasma are seen to arise from collective coherent states which couple to the 
energetic vacuum of the quantum state. In fact, the quantum picture gives us the mechanism and the description of 
the plasma media structure through which these collective modes arise. It is interesting to note that under certain 
critical conditions, the classical plasma physics also gives soliton acoustic mode solutions. The quantum picture 
gives us a more accurate representation of the conditions of the plasma in the vicinity of high gravitational fields 
near a black hole [32-34]. In the complete formalism, we treat the soliton wave as a mageto-acouston wave 
propagating in a strong magnetic field. The plasma–soliton coherent states have long-range coherent effects which 
are supported by the vacuum structure. 

 
E. The Role of the Vacuum Energy in Physical Processes 
 
A vast amount of energy is stored in the flux of the quantum vacuum. High energy processes such as high magnetic 
and gravitational fields near a black hole can activate and make observable the vacuum states. The vacuum energy 
has real physical observable consequences and its properties can be observed as having real physical effects [5,6]. 
These are extremely obvious in the vicinity of black holes. 
 Due to quantum uncertainty, seemingly “random” field fluctuations exist in the vacuum. Microscopic fields do 
not vanish and will arise as quantum fluctuations, although on a macroscopic scale electromagnetic field strengths 
average to zero these microfluctuations give rise to local energy variations and these quantum fluctuations arise 
from the energy-time Heisenberg Uncertainty Principle. This energy is powerful enough to create particles which 
live extremely short lives of about 10-20 seconds. Pair production from the vacuum does occur briefly and can be 
observed in the high field intensity near heavy nuclei. This charged pair represents a polarization of the vacuum and 
produces a minute but detectable shift in atomic spectra. The shift in the hydrogen levels is called the Lamb shift. A 
similar process of particle creation may occur in the vicinity of mini-black holes as well as astrophysical black holes 
[35-39]. 
 The quantum vacuum fluctuation energy is given as j

j
E  21  over a series of harmonic oscillators. 

Energy can be generated in the vacuum in a number of ways from external sources. This energy activates and 
excites the vacuum state so that the vacuum becomes observable through electron-positron pair production. The 
external energy, such as high magnetic field strengths and strong gravitational fields near superdense astrophysical 
bodies such as black holes or supernovae excite the plasma. It is through the energetic plasma states that the vacuum 
properties become apparent and observable. Under specific conditions with the correct available energy, coherent 
excitation modes appear and are like charged solitons in their properties. The precise form of the nonlinearities that 
give rise to the soliton structure can be formulated in terms of the complexification of the set of relevant equations 
such as Maxwell’s equations [38] or the Schrödinger equation [39]. The imaginary terms in these equations can be 
utilized to describe soliton coherent states. In reference [39], the effects of the actual coherent states and its 
application to the vacuum can be made. Boyer details the field theoretic approach to describe vacuum processes 
[40]. Also the experimental test of the existence of zero-point fluctuations is detailed, such as the Lamb shift, 
Casimir effect, and possible effects on long-range electromagnetic fields [41,42]. 
 Very energetic processes cohere the vacuum and create real physical effects. The question is if one can enhance 
this coherence and utilize it to optimize macroscopically observable “energy shifted” states. It is clear that the 
vacuum plays a role in physically realized states. The question then becomes, can we enhance the role of the vacuum 
to form interesting and utilizable processes in materials with coherent excitations that would be observed as apparent 
ambient superconducting states [21]. Let us briefly give another example of the role of the vacuum in physical 
theory, for example in chromoelectrodynamics theory, where we represent the properties of the vacuum as a form of 
soliton called an instanton which is a time-dependent entity rather than space-dependent like a soliton. We treat the 
relationship between quantum electrodynamics, QED and quantum chromodynamics in separate papers [4,43-45]. In 
the chromodynamics theory of elementary particle physics, the charged particles are quarks and their fractional 
charge is called the “color” quantum number. The field quanta by which the quarks interact are called gluons. 
Instantons arise out of the solutions that describe the forces in the chromodynamic field. They are properties of the 
vacuum. Since the vacuum is defined as “zero energy” they are essentially “pseudo-particles”. But instantons have a 
real physical effect; in their presence the gluons “feel” forces arising from the non-empty vacuum [4,44,45]. Solitons 
are coherent in space and instantons are coherent in time. In work in progress, we address the strong force and color 
force as consequences of a quantum gravity where a torque term and Coriolis effects are incorporated in the 
Hamiltonian of a nonlinear Schrödinger equation.  
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 The work of Lindquist and Wheeler fits well with our model of the vacuum structure. Briefly stated, this work 
involves the Schwarzschild cell method which considers the dynamics of a lattice universe as a consequence of 
Einstein’s field equations. These equations are fulfilled everywhere except at the interface between “zones of 
influence” [19]. The lattice universe by the Schwarzschild method yields an interesting picture of the vacuum. It has 
been noted that the elementary potential form of r/1  exists for a point charge in the Coulomb interaction. Also we 
note that the Schwarzschild metric contains an analogous r/1  potential for the ten Einstein gravitational metric 
potentials. Here 0 SQ , which is only an approximation to our balance equation because we consider 

0Q and 0S  and 0c . Then 
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 We now see a method of relating the Coulomb and gravitational potentials. Inside each domain of action of the 
potentials, we replace the actual gravitational potentials by the Schwarzschild expression. This treatment, uses the 
electronic wave functions which are derived from crystal lattice work and is extremely fundamental to our work 
[20,45].  
 Note that the third term in the Schwarzschild derivative is proportional to the Newtonian gravitational term 

2/GM r . So that the cells do not nullify each other, the equations of motion at the center of the cell are under a 
dynamic condition as is the cell boundary. The Wigner and Seitz method is used in analyzing the electronic wave 
functions in crystal lattices [46]. The Lindquist and Wheeler method depends on the mass of the singularities in an 
asymptotically flat space. Symmetry arguments from lattice structure approaches require the decomposition of all 
curved space into Schwarzschild cells. In the four-dimensional Euclidean space, the authors mark out vertices of 
regular geometric figures of the lattice universe. Particles can specify the vertices, where the nearest neighbors for 
n 5, 8, 16, 24, 120, 600 correspond to the tetrahedron, cube, tetrahedron, octahedron, dodecahedron and 

tetrahedron again respectively (see section 10). 
 We can compare this approach to our group theory and GUT theory and crystallographic point group theory 
[47]. What we observe in the Lindquist and Wheeler approach is a method of directly relating the electromagnetic 
field and gravitational field at the level of fundamental geometric structure.  We can construe that such a form not 
only governs the vacuum structure but uniquely relates electric and gravitational fields. The lattice universe space is 
closed but not by everywhere uniform curvature as in the Friedmann universe [19] 
 This is the point of our discourse and leads to the concept of a structured vacuum, which manifest stellar, 
galactic, and extra galactic dynamically gravitationally collapsing black hole systems. Here we have a new 
methodology for unification of fields and geometric scales. The shape of a typical cell is like a deformed cube in the 
case of an eight particle lattice universe. Three cells meet at an edge rather than the four in Euclidean geometry. 
 
F. The Quantum Formalism and Perturbation Analysis in Plasma Physics 
 
We can use the quantum formalism to calculate the density of the plasma undergoing collective oscillations under an 
externally applied field and under its own internal collective states. We quantize the classic wave equation for 
particle oscillations in terms of the second quantized formalism. We will examine in some detail the plasma electron 
excitation of the electron-hole pairs of the Fermi sea vacuum states. For the purposes of the present calculation, we 
will treat the ions as fixed [48]. 
 We can formulate the plasma collective states in terms of perturbation or interaction propagator. The 
perturbation theory can be used to treat a many-body particle interaction forming a collective plasmon (or phonon) 
state. We can form a perturbation series from our Schrödinger/Hamiltonian equation EUHU   [49,50]. This 
perturbation series is expanded in terms of a propagator where we use projection operators to project out observed 
states. The perturbation series can be written as a series expression in term of Feynman integrals. In this way we can 
picture the role of the energy of the vacuum in creating perturbations in the plasma giving rise to collective plasmon 
states [5]. This method has been used with a great deal of success both in superconductivity theory and solid state 
physics [51,52]. 
 In a potential field we can write a more general expression for the wave function: 
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where   is the internal spin wave function with the usual eigenstates for electrons being 

54.                      2
1 , and  

m
kVk
2

22
   

where V  is the potential experienced by the electron. The wave function is then expanded in terms of the creation 
and destruction operators, aa, . The ground state is equivalent to the vacuum state in quantum electrodynamics in 

a phenomenological approach to field theory, where the state of the form 0  is the noninteracting state of the 

system where there is no excitation of electrons and holes above the fermi surface. The state 0  is not identical to 

the empty vacuum   because of the so-called “passive particle” states which constitute the full vacuum of the 
Fermi sea model. 
 Using the propagator techniques of reference [5,6], we can write the density of plasma states from our 
perturbation formalism. We have a charge density operator,  tr, , which we can write in terms of our second 
quantized electron field operator. The Hamiltonian in terms of   can be written as the Coulomb potential V , 
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where 

56.                            trrqi
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and  tr, , the density operator, is expressed as  

57.                                                              trtrtr ,,, 
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 for field operators  tr,  expressed in terms of the operators a  and a , and  
 ,, kkj a , which is the 

propagator for density fluctuations in the electron-hole field. It is found that correlations form in the density 
fluctuations. The propagator is interpreted as the amplitude for the propagation of electron-hole or electron-positron 
pairs. 
 The singularities in the propagator function are of interest and represent the correlated oscillations of the electron 
density field. These singularities represent the phonon excitations that occur in the density field which is analytically 
continuous in the momentum plane, k . The singularities arise as a continuous distribution of poles which 
correspond to the possible energies of pair states. In references [5] and [6] one of us (Rauscher) has demonstrated 
the manner in which the density fluctuations can occur in the medium due to electron scattering. The resulting 
polarization or induced charge can then, in turn, affect one of the electrons by means of the Coulomb interaction. 
 The virtual pairs are produced from the excitation of the vacuum and are then equivalent to the density 
fluctuations which we have calculated. The important effects of the electron interactions on the properties of the 
electrons in the plasma arise from the modifying influence of the induced density fluctuations, and explain the 
manner in which plasma collective behavior arises. All the plasma properties are modified by the virtual state 
vacuum polarization. In reference [5] one of us (Rauscher) calculates the modification of the dielectric constant. 
Conductivity and other plasma properties are also affected by the existence of properties of the vacuum. 
 By including the appropriate series of Feynman graphs which represent the electron excitation of vacuum pair 
production, we find an adequate calculation of the observed plasma dielectric constant. The leading order term is the 
classical value and higher order terms give additional contributions of about 15% to match the observed values 
which demonstrates that quantum effects and vacuum state polarization have real physical properties. With the 
quantum approach, we can calculate the properties of the plasma more accurately. We can thus understand better the 
manner in which collective plasmon or phonon states arise as electron activation of electron-hole pairs from the 
Fermi sea vacuum state and what such formalism says about the properties and structure of the vacuum. 
 We have examined a model in which we treat the interaction of these collective phonon modes, from the electron 
pair creation, to the electrons of the plasma and treat this state as a soliton state which maintains its identity over 
nonlocal space and time. As in our earlier treatment, we consider fixed positive ion states, but as we see, these states, 
such as in lattice structures, can also contribute to phonon vibrational states, for example in the Lindquist-Wheeler 
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model [19]. Elsewhere, we have introduced the formalism for effect of coherent energetic plasmon magnetic 
acouston states on the vacuum [5,6]. 

 
G. Detailed Structure of the Vacuum State 
 
If we proceed from the empty null vacuum state 0  we can express the probability of this empty state under no 

action from the vacuum as 00  . If, however, a process is occurring in the vacuum, we can express this as some 

operation operating on the vacuum as 0opP . If coherent energy and entropy is supplied to the vacuum, and the 

vacuum has a structure, then we can denote this condition as nopP   where n  is a term in some series from 0  

(the ground state) to Nn  , where N  can be large or go to  . Effects on vacuum states from external sources 
can produce a variety of properties in an energized medium, including polarization, changes in conductivity, and 
other electromagnetic phenomenon. 
 We can associate each geometric, crystal form with a specific group for that form. A group is a collection of 
objects, such as mathematical symbols that are related by a set of algebraic operations. The generators of the group 
for the set of elements of the algebra can be commutative, such as Abelian 0],[ ji xx , or non-Abelian as 

0],[ ji xx . In a schematic representation we can state that the group lgae where the term alg stands for the 
algebra or actually, the generators of the group which are the elements of the algebra. For a Lie group, the generators 
are infinitesimal generators and form a Lie algebra. 
 For an Abelian group the elements of a commutative relation are expressed as exponents of log base e . The 
group is a sum of matrix representations. We represent the generalized commutation as  BAn ,  where A  has 

elements ix  and B  has elements jx . We have an expansion  
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where tAe  represents a unitary transformation and !n  is the product n...321  . 
 Starting with the square matrix representation  nmAA   for mn  . Then  BAn ,  represents the 

commutation relation and the zeroth order 0n  is given as   BBA  ,0  and the first order 

   BABA ,,1   and     BAABA ,,,2   etc. In general, then,     BAABA nn ,,,1    for higher 

order commutation relations. For a Lie algebra   0,  BAABBA . 
 A formal series of the group representations can be written as 
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which can be a unitary transformation. Now returning to tAe , which can represent a unitary transformation, we have 
the above expression where A  and B  are square matrices and     BAmBAA nmn ,,,   as a formal 

power series. We can say that ix  are the elements of A, Axi  , and jx are the elements of BxB j , . In general 

terms nx xxxxe .....1 32  .  
 In order to describe the energetic properties of the vacuum, we construct an energy Hamiltonian wave equation 
which describes the wave equations for interstellar, stellar, galactic plasma and plasmas surrounding black holes. Let 
us proceed from the classical wave equation 
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where 0c  is the characteristic velocity of the wave with amplitude  txU , . We utilize the simplified two 

dimensional form. The solution to this equation unveils a “left going wave”  txkieU  and a right going wave 
 txkieU   which sets up a standing wave in the plasma medium. 

 We can write the classical equation of motion for such a system in terms of the energy Hamiltonian, H . The 
momentum, p , and spatial dimension, x , also termed for the temporal dimension, t, yields the plasma space 
relations. We have  
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The equation of motion in terms of q  or x  is 0 qq   where  
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where m  and   are constants dependent on the particles in the plasma undergoing motion where m  is a mass like 
variable and   acts like a potential.  
 We then express paired p, q , which are canonically conjugate variables expressed in terms of the wave 

amplitude, U , where U  is the complex conjugate of U . Then 
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For non-abelian operators, we have the quantum condition   iqp ,  where   is Planck’s constant and for 

abelian algebras   0, qp  for the classical conditions. 
 We can construct creation and destruction operators from the vacuum state. Then 
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in the Fermi-Dirac statistics (half integral spin) apply at the micro particle level for the interaction Hamiltonian 
 jiiij

ji
aaaaAH   . The a ’s are the particle creation operators and the a ’s are the destruction 

operators where a  is the complex conjugate of a . When energy enters the vacuum from, for example,   rays 
impinging on a target, it will produce election-positron states. Positrons are created and electrons destroyed or 
absorbed into the vacuum where the positrons arise. The operators a and a  can create or annihilate a pair of 
energy quanta of the plasmon or phonon states. The energy Hamiltonian for the system is  aaH    where 

EUHU  . In the many Fermion spin ½ problem, we can expand the vacuum energy in a series of terms in 
analogy to the series of generator terms that make up the group representation of the structured vacuum. Thus we 
have the ground state Hamiltonian as 0000  EH   and the interacting perturbed or perturbed Hamiltonian as 

0001  EH   [5]. 

 In Perturbation Theory, 10 HHH  , then we can write 0000  H  for the unperturbed, non-

interacting state, and 0001  EH   for the perturbed, interacting state. We obtain the form for the excited 
states as 

65.                                                       01
00

00  H
HE 


   

where 001   which is the projection operator which projects the state 0  and 100   and 

100   for the normalization conditions. The term 
00

1
HE 

 acts as a propagator of the excited states. The 
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ground state, 0 equivalent to vacuum state, 0 and the ground state energy is given in terms of higher energy 
states and,  
66.                                                              01000  HE    
which upon interaction becomes a series expansion. We expand from 
67.                                                       0001000   EHHEH   
and upon interaction, we obtain  

68.                                          ......01
00

1001000 



  H
HE

HHE  

 The representation of the terms in the perturbation series are given by Feynman graphs. The state 0  occupies 

an analogous role in this theory for the many-body plasma states where 0  is the unperturbed vacuum state as is 
done in field theory. Field theory technique can be well adapted to our vacuum plasma model. What we can 
demonstrate in this approach is that we can form a mathematical relationship between a geometric structured 
vacuum and the usual picture of the Fermi-Dirac vacuum. Hence, our model brings us beyond the standard vacuum 
model to that of a structured vacuum which is congruent with observed structured forms in astrophysical and 
cosmological phenomena. This picture also effectively describes the intense energy interaction in the region of event 
horizons of stellar, astrophysical and cosmological black holes and their surrounding plasma media. These energetic 
processes determine the form, shape and structure of the observed astrophysical and cosmological structures. Hence 
the microgeometric forms of the vacuum drive these macroscopic forms. 
 We have detailed elsewhere the particular associated group and its group generators with specific geometric 
forms. This will relate the driving forces and energies of the micro vacuum structure to observed macroscopic 
cosmological events. Note that these derivations can lead to some detailed calculations of design parameters for 
laboratory experiments. 
 
V. RELATIVISTIC CONDITIONS ON THE BALANCE EQUATIONS AND THE  ENERGY DENSITY OF 

THE PLASMA 
 
In this section we detail the balance of gravitational forces with the surrounding electrodynamic plasma media. 
Relativistic invariance conditions apply. In the dense plasma media, standing coherent wave modes are set up 
between the ergosphere and the outer regions of the plasma field where the density of the plasma drops off to a 
collisionless media. We denote sr  the Schwarzschild radius (the approximation for the region of the inner radius) 

and  the radial distance to the outer regions where the plasma density drops below the energy nE . In this case, the 
plasma density becomes lower than the effective density for plasma-vacuum interactions. In this section we examine 
the propagation of electromagnetic waves in plasma in a region of a gravitational field near an astrophysical body. 
 The wave dynamics for the balance equation of plasma matter near the ergosphere can act as a coherent 
standing-wave pattern. We can derive the equation of this state in terms of a coherent soliton wave with low 
dispersive loss. Standing wave patterns drift towards areas of low wave velocity. Two opposing forces occupy a role 
in the dynamics of this wave pattern. The gravitational force acts proportionately to the gradient of the wave velocity 
squared, 2v , and opposing this force, in the action of the plasma media, is the force of inertia, which is 
proportional to the mutual acceleration of the wave pattern form and of the plasma media. The constant of 
proportionality for both forces equals the total vibrational or oscillatory energy of the soliton wave divided by its 

velocity squared or 2
s

s

v
E

. It appears that Lorentz symmetry of the medium may hold. For solitary waves or solitons 

the wave amplitude U  is proportional to its velocity squared 2v  and under the influence of the acceleration of 
gravity g  then gvU /2 . 
 The unconstrained motion of standing electromagnetic wave modes coupled to the vacuum obey the gross mode 
or collective behavior of collective particle states moving along geodesic lines of gravitational forces. This requires 
that the properties of the vacuum be considered. Boundary conditions are necessary to confine the standing wave 
pattern which balances the gravitational force and the electromagnetic energized plasma media. The black hole 
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event horizon is the dividing boundary between the strong gravitational attractive field and the collective coherent 
oscillatory field of the plasma medium. The energy of the media results from the electromagnetic, thermodynamic, 
and highly ionized vacuum coherent states. 
 Let us first consider the one dimensional d’Alembertian wave equation of the collective states of the plasma. We 
take the variational derivative of the Lagrangrian as 

69.                                                       
22
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
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x
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t
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the wave distribution is given as U , and   and   are electromagnetic parameters so that  /v  where v  is 

the wave velocity, and the wave impedance is z . The velocity, v , can be taken as the velocity of light. The 
Galilean transformation of time, tt  or vtxx   will give us the new Langrangian function from the above 
equation as 
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 We can write a wave equation for this Lagrangian by taking the variational derivative of the above equation. The 
states of the plasma medium and its motion obey the following conditions: 

71.                                                                   0


x
v

 and 0

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t
v

  

for no accelerative elasticity in the media 

72.                                                                    0



t


and 0



t


  

for the time independent rest frame and 

73.                                                                    0



x


and 0



x


  

for the spatial inhomogeneity in the rest frame. 
 Then we construct the wave generalized equation from our Lagrangian as 
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which differs from the standard wave equation by the additional terms
tx

U


2

, 
x


, and 
x
n

 

for electromagnetic 

wave propagation in a gravitational field where n  is an integer. 
 Under the conditions of local Lorentz symmetry, without applying the normally accompanying Poincare 
homogeneity we let 0v  and 

75.                                                                          0

 a

t
v

  

where the acceleration, a , is a Lorentz observable. For vacuum conditions z . The permittivity is   and 

the permeability is  . The electric displacement field ED 0  where   is the dielectric constant. Note that z  

became a more complex term when we use the phase invariant condition in a plasma. In fact z  and 


1c  when we consider more complex dispersion relationships as a function of collective frequency   

and wave number k  so that z  becomes a first order term where kc  . In the general case kc   but 

is expressed as a non trivial function of   and K . In terms of the dielectic constant,  , we can express   and   
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in matter in terms of their vacuum counterparts as 0   and 0   for    00 // 2 tv    in order to 
satisfy Eötvös type experiments [50]. 
 

In the simplest case the plasma oscillations satisfy an equation of motion of the collective state density of 
02    kk  where k  represents the collective component and k  represents the individual particle 

component in the plasma. The wave amplitude, U , is analogous to k . For the approximation of z  then 

76.                                                                  0
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


 dd

. 

This condition implies that the inhomogeneity of the vacuum does not lead to reflection and scattering and most 
of the energy is radiative. This is a fair approximation except that scattering may need to be considered in a super 
dense plasma. However, scattering effects can be taken into account by the formation of collective coherent states in 
the plasma. 

Using the condition for 0v  and 0a  and z  then our wave equation (74) becomes 
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We thus have the standing wave equation between the comoving boundaries of srx  , which we take as the zero 

boundary 0sr  and x  in the moving frame of reference. We can consider the simplifying assumption, a  
constant and  

78.                                                                  1
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Then the normal mode solutions that vanish at the boundary of the event horizon are: 
79.            tCeAtxU nnnn  sinsin,    
where  

80.               x
v

xv 2
2

2
2/ 

    

and  
81.             enCn /  
and  
82.             /vnn     
where 
83.               tv / . 
The time average of the energy density that is energy per unit length, is given or, using the above solution for nU , 
then  

84.                       222

2
1 eAE nnn    

in which higher order contributions of the order of 4v  are neglected. This is a good approximation for our 
conditions. 
 The experimental dependence of nE  on x  produces an asymmetry in the radiation pressure on the fixed 

boundaries which result in a net force F  between the media and the event horizon boundary as 
85.                      0nn EEF     

Utilizing the expression for  txU n ,  and substituting it into the above equation for force, F , we have  
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86.                 1
2
1 222   eAF nn   

In the case where 2v and using  
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we obtain  
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where we take nEE   in the first approximation of the total vibrational energy which is contained in the 
standing wave pattern between the event horizon boundary and the outer boundary where the plasma density is 
negligible. 
 The normal mode energy are additions so that    0nn EEF    holds for an arbitrary wave pattern 

satisfying the boundary conditions. The distance   defines the region around the black hole where the plasma is 
energetic enough to polarize the vacuum. Note that we use the inner boundary condition as 0 srx  at the event 
horizon. 
 We interpret the relation for the force in equation (88) as the condition that the acceleration of a standing wave 

pattern is associated with an inertial force which is determined by the equivalent mass 2
2

v
Em   or 2c

E  where 

cv  , the velocity of light. The standing wave pattern can shift position towards a place where 02
2





x

v  and 

seek a position where v  is minimal. 
 For electromagnetic waves, where the vacuum states are significant such as in a plasma, the geodesic line 
concept holds for the spacetime relativistic theory of gravity where 

89.              2

2

2
1

x
va



   

where   is equivalent to the Newtonian approximation of the geodesic line equation and a  is the acceleration. 
This will hold in the plasma media where   is outside of the event horizon sr  and not where sr  where sr  is 
approximately the Schwarzchild radius. Thus the Newtonian gravitational potential is a weak perturbation of the 
order of 2v . 
 Since our result for electromagnetic plasma waves in a vacuum obeys the geodesic line hypothesis in the 
spacetime theory of gravitation (see equation (89)) relativistic conditions apply. Hence the gravitational potential 
acts as a weak perturbation of 2v  when 22 ~ cv  in the fast wave approximation [43]. In fact, the soliton wave 
moves more slowly than the velocity of light, c . Our wave equation (77) applies for a more arbitrary media 
described in the more generalized wave equation in which 0v  and 0a . Under the conditions where cv   
which is our plasma case. These conditions work well in our nondispersive media or in fact where dispersive losses 
are balanced by the nonlinear terms to achieve the soliton conditions. However, the full treatment requires more 
general dispersion relations and more detailed consideration of the nonlinearties of the plasma in which we relate the 

collective frequency,  , and wave number, k . Thus the impedance  z  constant. The condition  
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is essential to obtain the gravitational potential gradient  
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to include gravitational effects on the electromagnetic field. 
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 At the outer regions of the plasma “matter wave” surrounding a black hole for the boundary at radius   about 
the black hole the plasma gas can exchange r  with r  but the standing wave solutions require that the 
waves act between sr  and   but the plasma media is not confined to this constraint. 
 This approach involves some approximations which we may need to relax because of the nature of the plasma 
near the region of sr . We have even developed a coherent description of electromagnetic wave momentum in 
analogy to particle momentum or “matter waves” in a gravitational field. This approach retains the symmetry of the 
stress-energy on the momentum-energy tensor of Einstein’s field equations. We now need to consider these 

electromagnetic “matter waves” or coherent wave structure where z  and where particle collections in a 
dense plasma apply. 
 For our amended field equations with the torque term and the resulting Coriolis effects, we are able to 
accommodate these conditions. Due to the Coriolis effect and as a result of the plasma dynamics, we can observe 
that torque is the driving force of the plasma field effects and hence the source term of the balance equation. The 
collective coherent states propagate information and their effects throughout the plasma medium. It is through these 
coherent states that the effect of torque is transmitted throughout the medium surrounding the black hole and is 
observable as the dynamics we observe in supernovae and other astrophysical objects. 
 
VI. RELEVANT THERMODYNAMIC PROCESSES IN ASTROPHYSICAL SYSTEMS AND THE 

BALANCE EQUATION 
 
Energy is transferred by conduction, radiation, and convection. Interspatial energy transmission is dominated by 
radiative processes. Conduction occurs on contiguous surfaces in stellar interiors and convection occurs on the 
surface and through the stellar systems. Individual radiative processes do occupy a role in forming collective 
thermodynamic emission and absorption processes. Planck’s spectral radiation law from nE  does apply but is 
dominated by much more complex dynamic collective processes. Debye’s approach treats a system as a continuum 
rather than a system at the individual particle levels, which is much more applicable to our extremely high 
temperatures case. For example, in the strong gravitational collapsing field in the vicinity of a black hole, activation 
of energetic processes in the surrounding gases can occur and form plasmas. 
 Debye’s so-termed 3T  law, where T  is the absolute temperature in Kelvin, was first developed for solid 
crystalline or amorphous systems and can apply to near zero degree systems. Such systems can be made analogous 
to interstellar and intergalactic dark matter (nonluminous matter regions), galactic halos, and perhaps, can be 
extended to the surface of neutron stars and the vacuum of the quantum domain. Proceeding from the energy 
content, E , and heat constant for the materials under consideration as well as the gas constant, R  from the energy 
constant NRT / , we have 4aTE   where  
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and thus depends on the radiation frequency emitted and also 

93.                    KT
1 .  

 
Very high pressure systems may require the Polanyi [53] treatment at finite temperatures or  

94.                    0
dT
dU

dT
dA

 

 as an approximation. This expression is derived from the Nernst [54] heat theorem based on thermoelectric 
materials. The energy associated is U , and the effect is the work, W , at temperature, T . Note that the entropy is  

95.               
dT
dWS  . 

 The radiative emissions processes make possible the detection of black hole dynamics from earth based 
observatories. The exact mechanisms of black hole radiation are not well understood, yet they are critical to our 
understanding of the fundamental nature of stellar and galactic black holes. These are the radio, visual, x -ray, and 
even  -ray emissions, which we observe on earth based systems. These emissions are radiative and depend on 
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temperature variations within the system. In the simple case for a two temperature media, 1T  and 2T we utilize the 
Stefan-Boltzmann equation for the rate of energy charge or loss,  
96.                4

2
4

11 TTeQ     

where 1e  is the emissivity at 1T  and (going to 2T ) and 425 deg/1067.5   cmerg . This formalism 
applies to the cooler regions of the plasma surrounding the black hole. 
 For high energy emissions nE  where 2/h and h  is the Planck’s constant, 

sec10683.6 29   ergh  which applies in the x -ray and  -ray regions. The properties of these emission 
frequencies, although complex, obey our previously derived scaling law [45] and the recent work of Uttley using the 
NASA Rossi x -ray timing explorer satellite to monitor galactic black holes for the last six years [55]. The pulsed 
frequency of x -ray emissions from AM210  to AM910 appear to scale in a similar manner to our by frequency vs. 
size [45]. 
 The dynamic plasma media surrounding black holes become observable in the  , x -ray, visible, and radio 
frequency regions by virtue of the activity within the surrounding media. Excitation modes form under 
thermodynamic radiative, convective and conductive processes in a charged media surrounding a rotating black 
hole. In order to describe this media we utilize the Poisson equation, continuity equation, and Maxwell’s modified 
equations expressed as the Vlasov equation. Not all aspects of these media are charged as some are neutral dust, 
although enough charge exists to create electric and magnetic varying fields [56]. 
 As is well known, plasma is a very hot state of matter, in which the electrons have been completely removed 
from their atoms, leaving positively charged ions. The ions and electrons operate freely in space. Ionized gas 
plasmas form plasma ionic-electron oscillations, moving in a spiral form around existing magnetic lines of force. 
Sometimes these plasma oscillations are called plasmons or “quanta” of collective behavior. Specific frequencies 
arise in particular plasma media which radiate outward and are observed by ground based observation stations. 
There are a number of specific oscillatory modes of a dynamic plasma medium. It acts as a fully charged fluid 
media, hence having properties involving Maxwell’s electromagnetic description and the fluid dynamics of 
Boltzmann. Since it is an extremely hot charged fluid it therefore undergoes a variety of thermodynamic processes. 
 We proceed from our kinetic equations, which are equations of motion that describe the dynamical processes 
which are under examination. The picture we address divides the problem into three parts, (1) collective particle 
behavior in a nonequilibrium state, (2) individual particle behavior which may be in equilibrium or nonequilibrium 
states, and the ideal case (3) where we treat the system as an “ideal gas” of noninteracting or non-colliding particles. 
Then the equation of state is  

97.               nKTE
2
3

   

where E  is the energy per unit volume, n  is the number of particles, K  is the Boltzmann constant, and T  is the 

temperature in degrees Kelvin, KT
1 . The formalism of the long range coulomb interactions characteristic of 

a plasma can encounter formal difficulties in the form of divergent integrals, which lead to infinities and hence 
singularities [5,48,57]. We denote the individual species density as in , jn , etc. and the distribution function as if , 

jf , etc., which can involve more than single particles as a distribution of “quantum like” collective states [5]. The 
plasma acts, in fact, more or less like a boson, in an electron Fermi field. Sometimes these collective states are 
termed plasmon states and can be associated with phonon or spin waves [50]. 
 As the collective modes of the plasma are perturbed or shock excited, the distortion causes charge separation to 
occur in which the electric field causes the perturbations to become more apparently stable. This rate of growth of 
coherent states is the rate which is similar to the Rayleigh-Tayler instability caused by gravity in a semi-uniform 
field which can occur around collapsing gravitational systems. Under normal conditions, the gradient of the 
magnetic field causes the drift modes to cancel each other from the electric field perturbations but when the 
gravitational field is strong, drift collective states in the gravitational field may not necessarily cancel out. Hence, 
plasma modes can move toward or away from a black hole in their vicinity. Each charged particle in the plasma 
tends to carry a cloud of apparently charged particles attached by the coulomb forces and some charged particles are 
repelled from the cloud. The quantitative expression of the plasma system is provided by the Maxwell-Boltzmann 
distribution and also Poisson’s equation. 
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 For the coulomb field of particle of species i  is  r , and the density of particles of species j  with charge 

ez j , and average density jn , is  

98.              reznrn jjj  exp  for KT
1 .  

Then the Poisson equation is given as  
99.             

j
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where j  represents the density of the thj  particle. Also basic to the plasma physics formalism is the continuity 

equation which expresses the conservation of charge 0

 j

t


 where j  is the vector current. 

 We utilize the Maxwell-Boltzmann or in some cases the Maxwell-Minkowski equations  
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which gives us the usual Maxwell equations as before, which are used in our plasma Vlasov formalism in which the 
Vlasov and Poisson equations are used [5,51]. The key is to include the electric and magnetic fields as in the 
Vlasov-Maxwell system [13,52]. 
 These turbulent perturbations often diffuse and propagate transverse to the magnetic lines of force. Accounting 
for many higher order terms and a number of coupling constants is not directly amenable to the analytic approach 
and requires computer simulations. Under such variable gravitational and electromagnetic conditions patterns can 
emerge under cyclical interactions but also large unpredictable dynamical instabilities will occur. Our wave 
equations must accommodate these two cases. Some of the more detailed analytic approaches can be found in 
reference [5].  
 In general, it is considered that the net charge on stellar and galactic structures is relatively small but extreme 
internal charge separation can occur. The major phenomenon, however is the rotation of the system, hence the Kerr 
solution is utilized. The angular momentum of the system generates Coriolis-like forces and these drive convective 
currents. Similar type forces can drive stellar matter plasmons near black holes from ergospheric tidal action. 
Patterns of material and current flow can occur over “Northern” and “Southern” hemispheres which are pinched at 
the equator resulting in a double torus. [3] 
 A good example of the Coriolis effects driving collective current and soliton type structures in ionized materials 
is the magnetohydrodynamic behavior of weather patterns in our ionosphere and magnetosphere. These dynamics 
produce highly charged, self-organizing, collective and coherent activities, from hurricanes with their large field of 
influence, to the high energy dynamics of tornados or even ball lightning (commonly described as highly charged 
soliton wave patterns in a highly ionized gas, or even as self-cohering mini-black holes) [49]. Furthermore, these 
self-organizing structures are confined to their respective hemispheres following very specific currents that take 
them from the poles to the equator and back to the poles due to the Coriolis effect driven by a fundamental rotational 
force we defined as a spacetime torque in our earlier work [3]. This torque term may in fact be responsible for both 
the angular and magnetic moment of our planet, which is crucial to the dynamo effect and the production of our 
magnetic field.  
 In the Kerr and Kerr-Newman solutions, we can address the concept of radiated and absorbed energy in a 
collapsing system. In general, such a system is much more observable, as an x -ray and visible source, because a 
finite rotating event horizon exists along with a “tidally acting” ergosphere. Radiative processes can be expressed by 
the Stephan-Boltzmann equation, where the energy is related to temperature as 4aTE   and  
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where R  is the gas constant and n is the frequency. The Boltzmann constant is ARK /  where A  is 
Avogadro’s number. For radiative emission, we proceed from Maxwell’s equations to describe the electromagnetic 
forces involved in stellar black holes and their environs. One of the primary results or solutions to Maxwell’s 
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equations is to derive and describe radiation pressure. We know that light or heat propagating through a vacuum 
striking a reflecting surface produces pressure:  

102.           0




t
BE  and j

t
EB 



  and 0 B  and eE  . 

The mechanical force of a magnetic field creates conduction currents as radiation pressure. The current density is  
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 We can establish radiation pressure and the energy of radiation, jdt , falling on the surface element d  of a 
conducting material (such as a plasma) in a time, dt . Poynting’s law of energy flow  
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the total pressure, P , i.e. the mechanical force,  

105.                   j
c

F cos2
  

in which arbitrary radiation proceeding from the vacuum is totally reflected upon incidence on the “conductor” 
which we associate with the surface of the black hole’s event horizon because highly charged plasma media is 
conductive. 
 The force itself is exerted on plasma particles yielding an equal and opposite momentum which is expressed in 
terms of the current radiation as  
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Radiative pressure is a fundamental consequence of electromagnetic energy as expressed by Maxwell’s equations. 
Moreover this electromagnetic radiation relates directly to the Stefan-Boltzmann radiation law of the form 
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with a total energy  
108.              VTETOT
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for volume, V . Through this approach and by the use of the pressure exerted by the surrounding plasma, we derive 
the balance equation of a dynamical black hole and its environs [56-58]. Long-range electromagnetic coherent states 
can be maintained under these and other highly specific conditions. 
 
VII. HAWKING RADIATION AND THE BALANCE EQUATION 
 
There has been a major change in the scientific thinking about the existence and nature of black holes. The 
“indirect” but increasingly persuasive evidence points to the existence and uniqueness of black holes. S. Hawking, 
R. Penrose, K.S. Thorne, and others have formulated some of these properties in terms of quantum gravity theory 
[35,59,60]. The usual concept is that black holes increasingly collapse to a singularity of infinite density.  It was 
Hawking who suggested a reversal of this process might model the early universe cosmological big bang, i.e. 
starting from a singularity and expanding out. In the quantum gravity picture, black holes emit particles near their 
outer boundary, losing some energy and being reduced in size. This faint thermal radiation is termed “Hawking 
Radiation” [35,36]. However, in our model (described herein and elsewhere) black holes may cohere a certain 
percentage of the available vacuum energy, through plasma-vacuum interactions, to maintain a dynamical balance 
over time.  
 Black hole radiation is emitted somewhat in analogy to “cavity radiation” or the black body radiation problem. A 
container with a small hole in it, into which radiation is admitted and trapped, is reradiated through the hole when 
the container is heated. Likewise, radiation trapped in hot black holes also “bounces around” and is re-emitted. The 
properties of this radiation depend only on the temperature of the emitting system. The temperature of the cavity 
determines the peak frequency at which the radiation occurs. The hotter the temperature the higher the frequency of 
emitted radiation. The solar radiation follows the black body curve, peaking at KT o3106 . This curve results 
from the Planck quantum radiation law. It is interesting to note that the quantum mechanical black body radiation 
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model may be an analogue to the cosmological scale black hole emissions, and thus, that black hole dynamics may 
be fundamentally involved, and to result in, a comprehensive description of quantum gravity. 
 Before the advent of Planck’s quantum theory, the black body radiation curve was fitted by the Rayleigh-Jeans 
classical law. However this law led to the so termed ultraviolet catastrophe in which the temperature vs. frequency 
relationship went to infinity at high frequencies. The higher the frequency, the more electromagnetic radiation would 
be emitted. However, Planck’s quantum introduced a new universal constant, h , which yielded a fit to the observed 
black body radiation curve. Planck’s quantized radiation emission law removed the ultraviolet catastrophe. Only a 
few atoms emit at high frequency values and there is a spectrum or quantum distribution of atomic emitters. 
Considering each radiant energy emitter oscillator to have an energy of KTE  where K is the Boltzmann 
constant, for thermal equilibrium. Note that this approach has implications for the balance equation. 
 Then for the energy dependence on frequency by the Rayleigh-Jeans law 
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for black body radiation. However, in the Planck hypothesis, we utilize nE  and for the frequency range n  to 
nn d  we have 
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 This equation yields a “Gaussian” like distribution giving a specific peak frequency of a distribution  for each 
temperature. The peak shifts up as the temperature of the cavity goes up. The specific nature of the radiation emitters 
was considered in detail at the early part of the last century. Some considered the emitters to be some attribute of the 
aether or a set of atomic electric oscillators. With the Bohr atomic theory, the concept of atomic oscillators again 
took hold. However, if we are to reconsider this model in the context of black hole radiation, the simple atomic 
oscillator concept may require reexamination. 
 The black body radiation curve is an extremely important issue in the consideration of black hole radiation and 
in quantum gravity theories. Since the energy states in the cosmological black hole are so much greater than an 
ordinary “black body cavity” we may need to reexamine the emitters functions (earlier proposed to be the result of 
an aether), as fundamental properties of thermodynamic oscillations of a vacuum structure. To address our balance 
equations for black holes, we must calculate the energy / entropy associated with black holes. Hawking calculates 
the entropy as follows. The entropy is a measure of the number of internal states or configurations on the inside of a 
black hole so that it does not appear any differently to an external observer. That is, the external observer would 
observe no change in mass, rotation, or charge. 
 The entropy is expressed as  

111.                   
G

AKcS
4

3

  

where A  is the area of the event horizon of the black hole,   is Planck’s constant, K  is the Boltzmann constant, 
c  is the velocity of light, yielding the entropy, S . In terms of information theory, there is one bit of information 
about the black holes internal state for each fundamental area of the event horizon. 
 Note that the Ko3 , more precisely, Ko7.2 , microwave background radiation, believed to originate at the time 
of the big bang, obeys the black body radiation curve. What is fundamentally important is that the universe behaves 
as a Schwarzschild singularity. The black hole system acts as a radiative “black body” having the Ko3  temperature 
emission energy, thus the Ko3  radiation supports the Schwarzschild universe model [25]. We can demonstrate that 
the entropy of the early universe and current black hole physics is consistent with the observed Ko3  black body 
radiation. This is a significant issue in quantum gravity and the early universe and has implications for the vacuum 
state structure. The clues about the properties of the vacuum state occur in the early universe.  Early universe models 
currently entail quantum gravity models. Hydrogen and helium at high temperatures in the early states of evolution 
of the universe involved the quantum process of pair production of electron-positron pair creation and annihilation 
from high energy  -rays. This creation and destruction process is formulated in terms of creation and destruction 

operators, a  and a  by Feynman graphical techniques. We relate the geometric vacuum structure into the group 
theory and relate to the Feynman graphical techniques in reference [5]. 
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 Black body radiation denotes complete absorption of light within a black hole. For the Schwarzschild condition 
the very early universe has a temperature of KT o

s
3210 , sT  is temperature start of the early universe, and energy 

of 1610sE ergs, and sE  is energy start. As the universe evolves, T  and E  are inversely proportional as they 

evolve to present time. In the current universe condition the black body radiation is about Ko3 and the 

corresponding whole universe energy is about 4510
n

n
T

E  ergs/degree. For this entropy we have 7510nE ergs 

where nn TE  is the ratio of the new energy and new time, proportional to nS or entropy of about 1045 erg/degree, 

our inverse proportional ratio yields, for our current approximation 
s

n
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s

E
E

T
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  which is an approximately linear 

relation. In fact this is only an approximation since entropy is also increasing. Note that nE , nT , and nS correspond 
to current universe qualities [50]. 
 A more exact approach is to consider the relationship of the temperature of the universe and the entropy of the 

universe throughout its evolution. This yields the inversely proportional relation of 16
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which is ~1032 so 1~nT  to Ko3 . The Boltzmann constant is given as KergK o/1038.1 16  and KTE  . 

This calculation yields the current black body radiation temperature of about 1~nT  to Ko3  which is very close to 
the observed value. Interstellar deep space is cold and exists near absolute zero. The interstellar media contains 
about one hydrogen atom per cubic centimeter of space of visible matter. We can consider other electron-electron 
coupling states that relate to electron-positron pair production utilizing the Bardeen-Schrieffer-Cooper method [21]. 
 Hawking [35] and Hawking et al. [36,37] utilize the quantum theory Feynman path-integral method to describe 
not only the usual classical absorption but also the emission of scalar particles moving in and out of the geometry of 
a Schwarzschild black hole. The amplitude for the black hole to emit a scalar particle is expressed as a sum over 
paths connecting future singularities and infinity. Analytic continuation in a complexified Schwarzschild space is 
utilized to calculate the amplitude or periodicity for a particle to be absorbed or emitted [37,56,57]. The relationship 
between absorption and emission probabilities demonstrates that a Schwarzschild black hole will emit scalar 
particles having a thermal spectrum characterized by the temperature, T, as a function of mass, M , by 

GMkcT 23 8/  . This gives us a simple derivative of black hole radiance [37]. The Feynman path integral is 
detailed in reference [5]. The usual constants are , c , and G  and k is the surface gravity geometry of the black 
hole.  

 In the case of a Schwarzschild black hole of mass, M , then Mk 4
1  using units of 1 Gc . This 

condition between emission and absorption gives us a thermal spectrum for temperature, T , as K
kT 2  where 

K  is its Boltzmann constant. In a sense, a black hole is an ultimate black body radiator and this radiation is 
ultimately quantized. Therefore, the ratio of emission is equal to that of absorption for N  photons in a cavity with 

energy E , is 


K
E

e , then the condition for equilibrium that is balance is K
kT 2 . Hence, Hawking radiation is 

key to our formalism of the balance equation. We also observe that we return to the relationship between the 
Rayleigh-Jeans Law of Planck’s quantum formalism. 
 Hawking concludes that this thermal emission leads to a slow decrease in the mass of the radiating black hole 
[35]. Primordial black holes of less than 1015 gm could evaporate to a Planck mass size of 10-5 gm singularity in the 
current universe [49,58]. In this paper we detail closed cosmologies and the Schwarzschild solution. However, in 
Hawking’s work, certain critical assumptions are made regarding quantum gravity theories and the conditions of 
Einstein’s field equations. For example, in our work we take into account a torque term in the stress-energy tensor 
[44]. Currently, there are no consistent theories of quantum gravity. One such assumption made by Hawking [35] is 
the use of a flat Minkowski metric consistent with classical mechanisms.  
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 Hawking uses the standard second law of thermodynamics requiring that entropy never decreases. The entropy 
of matter outside the black hole is the sum of the surface area of the event horizon, k . As gravitational collapse 
proceeds, the entropy of baryons and leptons in the collapsing body creates entropy which is supplied to the plasma 
outside the event horizon.  
 We can consider that the probability amplitude for a black hole to emit particles is related to the probability of 
the black hole to absorb particles. Hawking [36] also gives us a form of quantum gravity by his use of the path 
integral method as utilized by Rauscher [5] in the description of quantum plasmas. Hence, our balance equation is 
formulated in terms of quantum gravity in the expression of strong and electroweak forces. This is because the 
strong gravitational field of the black hole yields a superdense plasma [61]. 
 The path of a particle is formulated in terms of path integrals in curved space [5,36]. From the use of the path 
integral method one can derive an inhomogenous wave equation in a Schwarzschild field. As done in reference [5], 
a Feynman propagator  xxk ,  is formulated, where a particle moves from a spacetime point x  at 0t  to 

xwhere 0t  or pt  for an action integral  
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where g  is the metric on a curved spacetime and 
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x  and 

x  represent tangent vectors with components  
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 The path with extremes S  satisfies the geodesic equation with t  as an affine parameter. The timelike paths t  
are a constant multiple of proper time and the space-like paths are taken as the same multiples of proper distance. 
This gives us the relativistic part of the formalism. A black hole can be considered an electrically conducting 
spheroidal membrane at the event horizon. Its energy of rotation or angular momentum is expressed as large electric 
current flow, extreme gravitational interactions, and the angular momentum itself. A black hole of a given mass has 
a maximum rate of rotation in which there is a balance between the imploding and accreting matter so that the 
centrifugal forces are in balance. The centrifugal force, due to torquing, counteracts the inward pull of gravity and 
prevents more matter from falling into the black hole, which would further amplify its spin. For example, a black 
hole of 108 AM  or 100 million solar masses, yields a rotational energy of about 3 x 1048 kilowatt-hours. This 
energy feeds the Hawking radiation field, and the charged-rotating Kerr-Newman system produces a charge field 
that feeds energy into the surrounding plasma. It has been hypothesized that such a black hole system explains 
quasar phenomena by creating the energy emitted by quasars. The energy that quasars emit is on the order of an 
entire galaxy. It is possible that the black holes at galactic centers accrete enough matter to overwhelm the whole 
galaxy. 
 The torquing of spacetime affects matter-energy in a vicinity of space such as to create the galactic rotational 
form we observe as external elements of the galactic central black hole. A rotating charge creates a current flow 
around and in the charged plasma media produce magnetic fields. The magnetic field lines excite surface eddy 
currents and become distorted by the black hole rotation. They can pinch off as loops in the plasma field somewhat 
in analogy to solar coronal ejections and sunspot eddies of the solar plasma field. A rotating, charged black hole can 
act like a giant battery having an enormous voltage drop between its poles and its equatorial region of as much as 
1020 volts. Thus, the black hole acts as an enormous dynamo. As the magnetic field lines cross the polar field lines 
and return to the rest of the black hole, the induced current flow deposits its energy in the intervening plasma and 
accelerates it outward. This process, driven by spacetime torque, explains the jets of gas observed emanating from 
quasars, galaxies, and supernova poles and their enormous luminosity. The dynamical jet formations merge into the 
galactic halo.  
 The interstellar gas and gas near the event horizon become heated and, like any hot gas, emit radiation in radio, 
visible light, and x -ray bands. The Hawking radiation also involves the emission of trapped particles. Hence, black 
holes store tremendous energy through their gravitational field, charge field interaction, and spin. R. Penrose noted 
that the storage of energy in the rotation of a black hole is significant and may lead to the quasar and supernova 
stages. The significant determinant of a relatively stable galactic centered black hole, quasar, or supernova depends 
on the intrinsic balance between the torquing and the structure of the black hole, and the properties of surrounding 
plasma described in the balance equation. 
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VIII. EXPERIMENTAL EVIDENCE AND OBSERVATIONS OF BLACK HOLES AND SUPERFLUID 
STATES OF MATTER. 

 
Black holes are dynamically rotating systems. We present examples of such systems here and in reference [5]. Also 
there is emerging experimental accelerator evidence of mini black holes, and we present a brief discussion of some 
of this work here and in reference [3]. In addition we discuss some laboratory plasma experiments relating to the 
dynamic media hypothesized and observed to surround black holes. 
 Cygnus X-1 in the constellation Cygnus, the Swan, is an intense x -ray source and is observed as a distant blue 
star. It moves around a dark member identified as the first stellar black hole. The x -rays are emitted as matter from 
the blue star is accreted by the black hole. In the spring of 2001, the Rossi x -ray timing Explorer satellite made 
recordings of skewed variation in light emitted from GROJ1655-40 and, like distant quasars, atomic fragments are 
emitted at right angles to a disk of hot spinning gas. This system lies within the Milky Way. The 40 in GRO’s name 
refers to the distance of 40 miles above a black hole of AM7 , which produces an observed brightness variation of 
300 times per sec. The 40 miles correspond to the distance from the black hole event horizon to its orbiting plasma 
material. Also a 450 Hz signal is observed in the variation of emitted light, indicating a layer of material 
approximately 30 miles above the event horizon. This close proximity of orbiting material indicates the black hole 
and external plasma are rotating and charged, indicating a Kerr-Newman metrical description. These and other 
observations give strong credence to our approach. 
 Additional observations were performed with the Hubble Space telescope, the Extreme Ultraviolet Explorer 
(EVE) Satellite and the Chandra x -ray observatory of   j1118x480 which orbits a star of about one solar 
mass, AM . The spiraling disk of plasma orbits at about 600 miles from the ergosphere. This more distant orbiting 
material appears to be superheated, which produces the larger orbiting radius. 
 These systems act like an energetic charged field torquing engine driven by the high gravitational field of the 
black hole. Einstein’s field equations do describe black hole physics but do not include the effects of strong and 
weak forces or the electroweak force and, in general, electromagnetic forces for astrophysical systems. It is these 
forces that act to stabilize cosmological and astrophysical systems against complete gravitational collapse, which 
allows our balance equations to hold. 
 Relativistically, as the gravitational forces from black holes increase during collapse, time dilation occurs. 
Hence, we externally observe the process of collapse in the observer’s frame of reference, as exceedingly slow. 
From that point of view, the black hole acts as a giant dynamo of gravitational electromagnetic and nuclear 
processes producing a relatively stable and dynamically balanced system. Because both gravitational and 
electromagnetic forces are long range, a dynamic balance between these two forces is of primary significance, and it 
includes both the structure of black holes and their surrounding media. Gravitational torque and Coriolis driven 
magnetic forces shape the media surrounding the black hole. These forces, in balance, create the paths upon which 
the charged particles move, creating a toroidal form of the plasma media. As the “polar” jets emerge, part of the 
plasma loops back towards the equator to create a dual toroidal topological form. Spin and charge forces are 
necessarily considered to explain this formation and, as we have demonstrated, the Kerr-Newman solution including 
torque and Coriolis effects predicts such a formation [3]. 
 The pulsation of the electromagnetic field from 200 to 600 Hz in the previously observed quasar systems 
produces a pulsation in the lines of force of the magnetic field. Therefore, a set of resonant frequencies occurs in the 
system. The form and frequencies emitted by the dynamic plasma are also determined by the effects of nuclear 
strong and weak forces. These short range forces also have intermediate range effects through their coupling to the 
electromagnetic force as the electroweak force and through supersymmetry. Collective coherent states arise out of 
the plasma from short range interactions of atomic level couplings as we have shown earlier here and in reference 
[5]. Under extreme gravitational conditions, strong and gravitational forces may become balanced as presented in 
reference [3,43,62].  
 The emission of Hawking radiation is to be examined at the CERN Hadron Supercollider that is expected to 
come online in 2007. The multipurpose accelerator will be used to look for the Higgs boson as well as possible 
indication of mini black hole production. Detection of the possible production of mini black holes is expected to be 
observed through Hawking radiation and by other means. 
 Experiments conducted at the Brookhaven Relativistic Heavy Ion Collider (RHIC) are thought to have produced 
an analogous entity to a black hole. Nastase, et al. [63] compares the RHIC produced fireball to a black hole, but the 
fireball is too small and too low in energy to accrete matter from surrounding media. By use of Einstein’s 
equivalence principle, Tuchin [64] of the Brookhaven Theoretical Nuclear Physics Group, considers that the 
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acceleration and deceleration of ion beam collisions with target atoms can be considered to act as the extreme 
gravitational conditions similar to that of a black hole. Reaction times are of the order of the strong interaction time 
of 10-23 sec. Such a picture appears to be reasonable if Hawking-like radiation was detectable. Such radiation would 
prevent long lived mini black holes from existing because energy for their existence is carried away in this radiation. 
 Heavy ion two-beam collision experiments at the Brookhaven RHIC using gold ions, stripped of most of their 
electrons have a total energy per collision of 40 TeV in the center of mass reference frame. Also, surplus shock 
energy of the order of 25 TeV produces a fireball which creates new particles [65]. As many as 104 new particles are 
produced in these fireballs. Analogy is made to the early universe conditions in which the first atoms are formed for 

5104~ xtU  years. The size of the fireball that is produced is about 5x10-10 cm or about A .05 cm .05x10 -8  .  
 Another informative result of the recent experiments conducted at the RHIC is that the fireball produced by the 
high energy collisions acts as a quark-gluon liquid with fluid properties, such as can be treated as having capacity 
and viscosity. These results do not agree well with the standard model which expects gas like behaviors of particles 
at these scales. However, shockwaves are produced as one would expect in liquid systems. The behavior of particles 
in the RHIC collision experiments appear to act as a very low viscosity fluid and hence as a superfluid [65,66]. 
These systems may obey the standard laws of hydrodynamics and, under the influence of external magnetic fields, 
act as an MHD medium. Since the early universe of the pre-protonic era may have undergone an evolution of cold 
Fermion and Boson states that acts as fluids, we can term this new field of study a fluid dynamical MHD cosmology.  
 In his work at the RHIC on the produced fireballs, H. Nastase, et al. [63] argue that the observed fireballs form 
an analogy to a pair of black holes. This pair would comprise a double torus configuration [63]. Inside the black hole 
fireballs, Nastase hypothesizes that deconfinement of quarks and gluons occur.  Such a state of matter has been 
hypothesized for the early universe. It appears that we have a relationship between the black hole state and 
superfluidity. In Section IX, we present a possible relationship between plasma dynamics and quantum electron 
interactions, and electron coupling in the BCS model.  
 Recently, atomic experiments have been conducted on an ultracold gas of Lithium 6, Li6, atoms which can act as 
a vibrating semi liquid or as a superfluid. Laser beams are used to heat cooled atoms in which vortices are observed, 
indicating a superfluid state. The gaseous Li6 cooled state represents Fermion supercooled, superfluid media. One 
other superfluid has been found for liquid Fermion atoms of Helium, He3, which is also superconducting. Such 
superfluid superconductors may have properties similar to neutron stars. 
 In the Li6, experiments a superfluid gas, rather than a liquid, more closely matches the material density of the 
interstellar medium. Under the conditions of an applied external field the Fermionic superfluid state acts as Fermi 
atoms forming pairs before producing the Bose-Einstein condensate [67]. The usual Cooper pairs found in 
superconductors involve the BCS Model [68] and are not the same as the new states observed in the Li6 atoms. Also, 
under resonant pulsed application of the laser trapping of the Li6, where an external electric field was applied to 
confine the atoms, a frequency of vibration of the media was observed to be 2837Hz, which is close to the 
theoretically predicted frequency of 2830 Hz for the hydrodynamics of a Fermion gas. An analogy to Copper pairing 
[22] is made for spin up and spin down atoms. All the details for the theoretical model of the Fermion state are not 
worked out [68]. Spin coupling in superfluid states allows us to treat an ultracold Fermion gas, such as Li6 in 
analogy to a Bose-Einstein condensate for electrons. The state of superfluid matter is always found to be vorticular 
in structure and persists in frictionless flow [69]. Since this superfluid phase is of the order of density of the 
interstellar atomic matter, clues may be found for observed astrophysical forms [3]. 
 Perhaps we can form a model which relates the superfluid vorticular flow to observed vortices emanating from 
quasars to supernovae. Exposure of the superfluid gas to externally imposed magnetic fields can form a tuned 
resonant system state with the Bose-Einstein condensate and/or related supercoherent states. We have a possible 
relationship of superfluid matter and black hole physics [66]. In addition, we have a balance system comprised of 
the relationship of black holes and their surrounding plasma media. In the next section we will examine theoretically 
the relationship of the plasma MHD equations and the supercooled, superconducting BCS model. This relationship 
further describes the long range coherent states of matter which surround black holes.  Rotational or vorticular flow 
in a superfluid has zero curl, unlike a solid, because the flow velocity is the gradient of a phase. The superfluid as a 
whole will respond to frame dragging created by vorticular flow and between vortices, the flow is irrotational or 

0   in the superfluid condensate. 
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IX. ELECTRON COLLECTIVE COHERENT STATES IN PLASMAS AND IN SUPERFLUID 
STATES IN THE MEDIA SURROUNDING BLACK HOLES: THE RELATIONSHIP OF THE 
MHD AND BCS MODELS 

 
The results of the fireballs, of visible but small size ~0.1 mm, from the Brookhaven National Laboratory Relativistic 
Heavy Ion Collider have yielded unexpected results. The heavy ion (gold) collisions on gold were designed to 
produce a media that mimicked early universe conditions as described in the previous section. Instead of producing 
a quark-gluon plasma which behaved like a charged gas, with independent particle motions, collective coherent 
states within the fireballs were observed [66]. The particles collisions moved collectively under the influence of 
pressure variations in the same manner as a fluid state. The post collision particles behaved like a perfect uniform 
fluid, in which heat was able to dissipate rapidly.  
 In this section we will demonstrate that the collective behavior that arises in plasma and certain liquid and 
superfluid state phenomena, may not only explain the results of these and other experimental results but also yield 
information about early universe conditions (~14x109 years ago). These fundamental collective states also explain 
the properties of the media surrounding black holes universally, from mini black holes, stellar black holes, and 
galactic black holes. Ultimately, the formulation of the dynamics of these states may lead to a more complete 
understanding of the properties of spacetime itself acting at all size scales, including the structure of the vacuum. We 
will observe that our formalism explains the ubiquitous nature of these collective coherent states. 
 The relationship between the plasmon-acouston (acouston-like phonon) states of a plasma are related to the 
exciton modes and Bose-Einstein Condensate (BEC) states in a gas of indistinguishable atoms. One commonality of 
these states is the collective behavior of individual particles. In these modes of excitation-interaction, the individual 
particles, electrons, ion or atomic wave functions, extend in space and overlap when the individual particle states 
cohere in a nonlinear media and are close enough, i.e., space below the Debye limit.  
 The BEC states, obeying Einstein-Bose statistics, can be formed at low temperatures of several Ko  systems, 
which reduce the kinetic energy states of the atoms to the order of interstellar space media. Then the atomic matter 
waves overlap and become coordinated so that collective macro particles and atomic states arise in the media. The 
formation and effect of collective, coherent states of the media is such as to polarize the vacuum states. It is only 
through the collective states that the effect of the vacuum can be detected and measured and produce 
macroscopically observed effects. Some of these effects entail the structure and properties of the vacuum which 
determines the formation of these states in matter.  
 One method of producing BEC states in the laboratory is by energy supplied by infrared laser beams, which 
bombard target atoms. The laser frequencies are chosen so that their photons cool down atoms by bombardment and 
hence act to cool down the atoms to a few degrees Kelvin. This laboratory procedure also employs magnetic cooling 
techniques which can be used to selectively “incorporate” more energetic atoms to further cool the system. These 
BEC states are long-lived, can last up to twenty seconds using intermediate mass atoms. Likewise, the conditions 
around stellar and galactic black holes comprise states of matter that, under strong gravitational and magnetic fields, 
in highly luminous condition, also form very coherent, collective states of matter. In previous sections we have 
enumerated some of these states in our formation of plasmon, phonon, and exciton states and their effect on 
polarization of the vacuum.  
 The exciton state is a state of the vacuum in which an energetic electron and a positron state formed from a hole 
in the vacuum Fermi sea through photon decay to the ee  pair. In the case of exciton formation, the electron and 
positron can temporarily orbit each other which is called a singlet exciton. Multipart excitons can be formed and 
represent one of the forms of vacuum excitation. Excitons were first considered as specific states in certain crystal 
lattice formations. It has been determined in laboratory conditions that singlet excitons have no magnetic moment, 
but triplet excitons have a magnetic moment. 
 We will demonstrate the manner in which the magnetohydrodynamic equations and the Bose-Einstein 
condensate equations relate to each other. This gives us a significant formalism to relate the particle fields 
surrounding apparent holes and their fluid-like properties. The collective states that arise out of these equations yield 
soliton solutions. These solutions, which can be related, are derived from a nonlinear Schrödinger equation [57] and 
can be identified with quantum correlations when the quantum coherence length becomes comparable to the length 
scale over which the supercoherence or superfluid density varies [70]. One such circumstance where this occurs is 
the center of superfluid quantum vortex in a rotating fluid hydrodynamic system. Some of these coherent states can 
be sustained over macroscopic dimensions.  
 Elsewhere we explore in detail a nonlinear Schrödinger equation which utilizes the potential energy of torque 
and its kinetic effects such as the Coriolis force yielding soliton solutions with spin dynamics [8]. This approach 
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yields a quantum gravity picture with a fundamental rotation or spin component in the metric tensor [3]. In the case 
of rotating spacetime which arises from the fundamental torquing component in the metric, we have a line element 
of the form  
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where g  is the usual form space metric with indices ,  running from 0 to 3, and indices ji,  run 0 to 2 and 

ijg  is the Haramein-Rauscher metric [3]. We can also write the four space metric   g  where   

can be identified with the Coriolis effect and   represents the effect of the background spacetime, which 
introduces a perturbative dynamical term in the Lagrangian,  

115.              


2
1L  

 where   is the symmetrical stress-energy-momentum tensor for the coordinates. The usual spacetime 

coordinates are  tΧ ,  or  tzyx ,,,  in which the usual term is utilized and has the metric g . The expanded 

space is expressed in the coordinates   ,,, tX  which covers a larger domain. We will expand on this concept 
later in this section and in reference [8].  
 A complete formalism, which relates the plasma field surrounding black holes and their excited fluid state 
conditions, has not been completely formulated. Our approach in this section is to relate the MHD and BCS type 
approach under the field conditions of strong gravity and large electromagnetic fields. The key to this formalism is 
the effect produced in the vacuum and the vacuum’s effect on the media [69,71-73]. In this section, we examine the 
mechanism of superfluidity and superconductivity, the BCS model. Cooper electron pair coherent states, and other 
exciton models [72,73]. We will examine the relationship of these exciton models to the phonon or plasma state 
described in the previous sections and to the solitary wave collective state. The relationship between the quantum 
coherent excitation states in the MHD physics and the Cooper pair electron states have interested Rauscher [72] for 
a number of years. Currently laboratory and astrophysics data have borne out this connection. Collective electron 
behavior is key to coherent states in plasma and superfluid systems as well as lattice coherent states in solids. It is 
possible that such an approach may allow us to develop “room temperature” soliton conductors, i.e., apparent 
thermal superconducting-like states. These states may naturally exist in the dense plasma media surrounding black 
holes. The relationship of the MHD approach and the BCS approach to excitons can give us insight into plasma 
coherent states. 
 The detailed mechanism of superconductivity and plasma oscillations are similar.  The plasmon or phonon 
oscillation arises because of the dynamic behavior of the electron gas in both our quantum plasma theory and the 
BCS theory. Collective electron behavior of the electron gas is activated when an external electric and magnetic 
field is applied. Collective states activate, excite, and polarize the vacuum. Since the electrons, possessing a finite 
mass and thus inertia moves in such a manner as to screen static electric fields, the electrons “over-shoot” the field. 
This process produces a net positive field by the electron’s absence in some fixed location instead of a negative net 
charge. The collective electron behavior produces another nonequilibrium distribution and, in a sense, produces an 
opposite electric charge. The electrons then begin to move in the reverse direction and again over-shoot their 
equilibrium target, and so on. The electrons produce an oscillatory motion with the Coulomb interaction acting as a 
restoring force with the mass of the electron as the inertia. This process is called a plasma oscillation and is related 
to the Debye screening process and determines the size of the coherent oscillations in a particular set of external 
field conditions. The key is the production of nonuniform, nonequilibrium space-charge filed in the electron gas and 
the properties of the externally applied field of strong gravity and electromagnetic fields. 
 The plasma interaction is not accounted for by the simple picture of binary collisions. The potential field around 
a charged particle is effectively screened by the cloud of other charged particles. The characteristic domain of this 
cloud is determined by the plasma conditions such as density and temperature. This distance is termed the Debye 
screening length, D  as we previously discussed.  
 For the case of a metal lattice, for example, the electron-electron interaction and field effect is produced by the 
screening process. The effective interaction is short-range and of the form   krere 2 . Here, we consider the 
electron-electron as well as the electron-ion interaction. The electron-electron interaction is directly repulsive in the 
bare Coulomb interaction. 
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 In the metal lattice or superdense media in space, interaction is mediated by an “over-shooting” process. As a 
current flows and the electrons are in motion, positively charged ions begin to move toward the instantaneous 
position of the electrons which are moving at the Fermi velocity, Fv , where iF vv  , iv  being the ion velocity. 
Thus, there will be a “packed” region behind the electrons containing an excess positive charge density. This 
positive density region attracts a second electron and hence, there is an apparent positive electron-electron 
interaction. This attraction is indirect and is termed the phonon-mediated electron-electron interaction and is the 
screening interaction between electrons and ions and between electron-electron interaction states which acts as a 
collective coherent motion in the media. In the simple two-component plasma consisting of equal densities of 
electrons and ions, the oscillation of the plasma frequency corresponds to an out-of-phase oscillation between the 
two constituents, which is termed the optical mode of the plasma, which is sometimes associated with optical 
pumping of the plasma. The in-phase oscillations are termed the acoustic mode of the plasma and these are the ones 
of interest to us.  
 The basic BCS theory of superconductivity is one of the most striking examples of a successful theory of solids 
[21]. The BCS theory, or the independent quasiparticle approximation, has been applied to the theoretical 
formulation of superconductivity as well as to nuclear matter single-particle states. The BCS theory accounts for 
most of the observed experimental effects associated with superconductivity. In the isotope effect, the critical 
temperature, c  (for the onset of superconducting properties of an element), is related to the isotope mass, m , as 

cTm 2/1  = constant, for a given element (except for the transition elements Rubidium, Ru, and Osmium, Os). This 
result suggests that the properties of the lattice phonons, zero-point or thermal, are involved in superconductivity 
and thus explains the dependence of atomic mass. It is believed that the interaction responsible for superconductivity 
is the attractive interaction between two electrons near the Fermi surface, caused by their interaction with the zero-
point phonons. In the case of the elements Ru and Os, which do not show an isotope effect, the interaction with 
zero-point electron modes is not dissimilar to anti-ferromagnetic domains or the Meissner effect in which the 
magnetic field is excluded [74]. 
 The discovery of flux quantization, in units of one-half the natural unit ech /  is a strong confirmation of the 
central role of paired electron states as predicted by the theory, where c  is the velocity of light, h  is Planck’s 
constant, and e  is the electron charge. There are possible ambient “room-temperature” coherent collective 
phenomena that may exhibit similar properties to that in superconducting materials, which may be identifiable as 
soliton states [75,76]. This research yields a relationship of laboratory experiments derived from the understanding 
of stellar and cosmological black hole media. 
 The short range part of the two-body interaction force is approximated by the so-termed pairing force that 
couples two particles (electrons or ionic nuclei) with total angular momentum equal to zero. Higher order (long 
range) terms can be included as a multiple expansion in order to account for coupling two particles with nonzero 
angular momentum. The Hamiltonian for the problem is  
116.                 int0 HHH   
 where  
117.              qppair HHH int  
and  
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for interaction-Hamiltonian intH  and pairing force interaction pairH  , and 
1va  and 

2va  are the Fermi operators 
that create and destroy a particle in state v . The interaction couples the individual particle states to the collective 
phonon states and the coupling of the two electrons occurs indirectly through the phonon field. The phonons occur 
in plasma excitations as well as condensed matter excitations. We utilize the Hamiltonian formalism in this section 
and the next section to describe the collective states of matter and the vacuum structure. 
 Using the second quantized formalism, we can formulate particle-hole interactions of elementary excitations. 
The completely occupied Fermi sea extends to the vacuum state. In general, the superposition of particle-hole states 
and the vacuum state corresponds to a modification of the Fermi sea negative energy states of the vacuum, and 
hence, the vacuum occupies a constant role in these collective state phenomena. An analogy can be made to vacuum 
structure and crystal structure, and hence, we may be able to deduce the lattice structure of the vacuum. We 
calculate the excitation energy for various crystal deformations,  , with higher order multiple interactions. In 



Media Surrounding Black Holes 315 

analogy to the band layer electrons, we can calculate the gap energy with this model. The energy-like gap parameter 
is denoted as   and single-particle energies as v . Two-particle interactions are given in terms of the pairing force 

interactions where the pairing force is given as 0G , the coupling parameter in the Hamiltonian. 
 The key to the 1957 BCS superconducting model is the concept of the formation of Cooper pairs of electrons, 
which arise from the electrons in a conductive media, whether a solid, liquid, or gas [21]. Each member of the pair 
moves in the opposite direction at the same speed. If no current from an external electron or magnetic field is 
applied, the center of mass of the electron pair is zero. If a current is applied, then the effective center of mass is not 
zero, and hence a net moment arises. We might say that the ion oscillation acts like an electron-electron interaction 
pump. This vibration gives rise to an electron pair acceleration by the imbalance in the vibrations of the ions which 
produce a net charge effect and hence mediate the electron-electron interaction. This is similar to the electron 
collective states in a plasma. The key here is to understand the relationship between plasma dynamics, superfluidity, 
and superconductivity, which appears to indeed come together in current high energy physics experiments and in the 
vicinity of galactic nuclei. 
 In the highly organized superconducting superfluid state, a change in the momentum of one pair requires a 
change in the momentum of all other pairs as well. The energy needed to redistribute the momenta of the Cooper 
pairs, which creates the electrical resistance, is much larger than the vibrational energy available in the lattice at low 
temperatures. In the laboratory, the critical temperature at which we have the onset of superconductivity is variable. 
For example, for helium (the first superconducting material found by H.K. Onnes in 1911) it is KT o

c 2.4 ; for the 

metallic alloys we have KT o
c 17 ; for vanadium-silicon and niobium-aluminum-tin it is KT o

c 7.18 ; and 

KT o
c 2.23 for an alloy of niobium-germanium (Nb3Ge) and KT o

c 93~  for Y Be Cu O.  
 We detail the second quantized formalism for superfluid, superconducting systems which are similar to the 
formalism for the field-theoretic plasma calculation which has been presented already. This approach well describes 
the collective states of a many-body media for cool plasma and superfluid states. With our Hamiltonian approach, 
we describe photon coupling and electron-electron interaction and compare these states to electron-positron states 
arising from the vacuum. We use the second quantized formalism, as before, for the indirect electron-electron 
coupling through the phonon field. To the first order for the electron-photon Hamiltonian we have 
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 where C  and C  are the Fermion (electron) creation and destruction operators and a  and a  are the operators 
for boson or phonon fields, and A  is a time-ordering C-number [5]. 
  

The effective Hamiltonian for the interaction between two electrons is given by the second-order 
perturbation theory, H  : 
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1 HHH   for the two electrons and 0H  is the unperturbed Hamiltonian and 0E  is the ground state 

energy, and the 
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 is the perturbation operator. The subscripts k  and q  define electron and photon states, 

respectively.  
 Ignoring self-energy terms and taking the expectation values of H  , at absolute zero, terms in aa  vanish and 

aa  give unity, so that 
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Considering the diagonal elements of H  , energy is conserved between the initial states k  and final states q . The 

k  states, 
~
1k  and 

~
2k  refer to the two electrons involved in the interaction. For our Hamiltonian, we have 
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The electron-electron interaction for this equation is attractive, that is through negative charge states for excitation 

energies of 
~~~~
qkqk    , and in other cases repulsive in nature. The Feynman graph for H   is  

123.   

              
 which represents the electron-electron indirect interaction through the lattice or coherent phonons (in analogy to a 
laser). Even in the attractive region, the interaction is opposed by the Coulomb repulsion, but for sufficiently large 
values of the interaction constant, D , in our expression for H , the phonon interaction dominates when 

Dkqk t  
~~~

 where D  is the Debye energy. That is where most phonons are near the Debye limit. In this 

limit we can simplify it as 
124.             
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summation over final states 
~
q  are made, and the quantity, V , is taken to be a positive constant or 0V . This 

Hamiltonian contains the essential features of the problem. Additional terms in aa  come into the Hamiltonian for 
Kt o

c 0 .  
 In order to understand the superconducting-like state we need to understand the properties of a Fermi gas under 
an attractive two-body interaction with the Debye cutoff and the role of Cooper electron pairs. As we before stated, 
the Fermi gas directly interacts with the vacuum state. These structures could not exist without an active structured 
vacuum. Bound state electron pairs are fundamental to the formation of the collective states in a Fermi gas. L. 
Cooper [22] was the first to suggest that unusual coherent properties would arise from the attractive interactions in a 
Fermi gas. He proved that the Fermi sea is unstable against the formation of bound pairs. This discovery led directly 
to the BCS superconducting state analysis and also relates to MHD collective electron states. The BCS theory deals 
with the many-electron problem in the second quantized formalism which is more complex than the electron pair 
problem, but the pairs are crucial in a very important manner to the BCS matrix element. Because the density of the 
superconducting electrons is of the order of 310~  electrons per 3cm  or more, Cooper pairs would have to 
occupy the identical volume. This high degree of overlap is so great that we can consider the superconducting 
ground state as a collection of non-interacting pairs. 
 We calculate the eigenfunctions and Hamiltonian for two electron states. For a center-of-mass system, we have 

~~
1 kk   and 

~~
2 kk  , so that the one-electron state is the pairs 

~
k . Including the electron-electron interaction 

(our last expression for H  ), we have 
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for 2
2

2
1

22 ppp   with the eigenfunction form  
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kkHkkqg kkkk   for our matrix element with 
~~~
qkk   and 

~~~
qkk  . The density of two electron pairs in the states 

~~
, kk   per unit energy range is defined as    and 

the secular equation, for the Lagrange multiplier   is given as  
127.                  0  Hgdg  

where we take V  as positive or 0V  and can express it as   HV . The energy range D  of one 
electron relative to the other of the pair outside of this energy range is zero. In this manner, we can define the energy 
states for the onset of superconducting properties. In the momentum space k  we can suppose a pocket made up of 
one-electron states above the top of the Fermi sea, between F  and DF   , or between Fk  and mk  where mk  
is defined by 

128.               22
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FmD kkm  .  

We can approximate     by F , the constant value of the Fermi level, and define the lowest eigenvalue as D  

and  FD  2  for  
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where   is the binding energy for the pair relative to the Fermi energy level. This energy gap can depend on 
temperature. If V  is positive, we lower the energy of the system by exciting a pair of electrons above the Fermi 
level, and since this excitation state is more stable, which implies that the Fermi sea is unstable, it has intrinsic 
properties that give rise to collective particle pair and other states. These “band layer electron pairs” give us the 
superconducting properties. 
 The ground state of a Fermi gas has attractive electron-electron state interaction. This state is associated with a 
superconducting ground state, and in the Hydrogen and Helium dominated interstellar media, can be associated with 
vorticular flow in superfluids as well as collective particle states in plasma. For one-electron Bloch energy, 

~
k , 

relative to a Fermi level energy of zero, the complete Hamiltonian is given by 
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For simplicity, we do not denote spin indices. The Pauli exclusion principle needs to be considered carefully in the 
sums. This is the standard form of the BCS Hamiltonian, similar to the BCS reduced Hamiltonian.  See (124).  
 There are a large number of nearly degenerate configurations in which the Hamiltonians relate to each other. If 
all the terms in H   are negative, then we obtain the lowest energy state for the Cooper pairs. Usually, without 
Cooper pairs, there would be as many positive as well as negative matrix elements of V  and no superconducting 
state would occur. We can generate coherent states of low energy by use of the subset configuration between matrix 
elements of the phonon field interaction for 0V ; then the Bloch states are always occupied in pairs. The 
interaction conserves the wave vectors, by unitarity, such that we can examine only pairs which have the same total 
momentum Kkk 

~~
 , where 0K  for a rest center-of-mass and the pair is denoted as 

~~
, kk  . We have not as 

yet introduced the electron spin; for antiparallel spins, spin-up or spin-down pairs, where the energy will usually be 
lower. We shall denote the spin index as 

~
k  for spin   up 

~
k  for spin   down.  
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 Our BCS reduced Hamiltonian can then be written as 
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and the approximate ground state wave function, 0 , is  
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where vac  is the Fermi sea vacuum state and where 
~~

, kk v  occupation numbers are constant. See equation (130). 

The product is taken over k  states. In the ground state 0  all electrons are paired and 
~~
kk vv   because CC ,  

anticommute or ],[],[   CCCC . The subspace in both states 
~~

, kk   of a Cooper pair are either both occupied 

or both empty. Recall that at the Fermi surface 0
~
k  and the only field acting on a spin Fkk 

~
 and F  is the 

density of states at the Fermi level. In the region D  to D  where the constant, V , represents an attractive term 

in the Hamiltonian, then D  is of the order of the Debye energy and the solution to the BCS energy-gap parameter 
  becomes  
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 For the first approximation to the excitation spectrum, the energy 
~
kE  is given as 
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where we consider only the positive square root. The minimum excitation energy is 2 . The superconductor thus 
has an energy gap which is detected by heat capacity curves of tunneling electrons through a barrier (Josephson 
junction) and transmission through thin films in far infrared radiation. As long as 0V , the coherent state is lower 
in energy than the normal Fermi state, hence the criterion for superconductivity is that 0V  and for 
nonsuperconductivity is 0V . The critical fields at KT o

c 0  is 8/2
cg HE   for a system of unit volume. 

 We can extend this formalism to the finite transition temperature in the theory of ferromagnetism. Thus if we 
relax our criterion that terms 0aa  and 1aa  for DcT  , then down to cT  we can calculate 

approximately FV
Dc eT   14.1  and thus cT5.32   using our equation (133) for 2 . For example, 

5.3/2  cT  for nS , 3.4 for Al, 4.1 for Pb, and 3.3 for Cd, and hence we observe the 21mTc  isotope effect which 
is key to the observation of the existence of coherent states. This law may break down for higher temperatures, for 

K070~ . Neither V  nor F  depend on m , but D  is directly related to the frequency of the lattice vibrations, 
or phonon states in the vacuum or media. The frequency of an oscillator of a given force constant is proportional to 

21m  and thus 21mTc  is a constant for an isotope variation of a given substance. (Well known exceptions are Ru 
and Os, both transition elements, where perhaps other particle coupling mechanisms occur.)  
 Another issue is the electrodynamics of superconductors. For gauge invariance, for the Coulomb gauge div 

0
~
A  which is the usual form of Maxwell’s equations, i.e., no divergent B  fields or magnetic monopoles, then 

the normal state of paramagnetic current approximately cancels the diamagnetic current. The energy gap is zero in 
the normal nonsuperconducting state. For a normal insulator the vertical excited state is reached by a one-electron 
transition but for a superconductor only two electron transitions occur [23]. T.R. Schrieffer has demonstrated the 
gauge invariance of the BCS theory, and in ref. [24] he also examines plasmons in solid state plasmas. A gauge 
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transformation from the Coulomb gauge implies that one adds to the vector potential, 
~
A , a longitudinal part 









~~
qqi   (where the expectation value of the diamagnetic current operator is taken for 0q ). Such a term in the 

potential is coupled strongly to plasmons excitations and in fact shifts the phonon coordinates. This shift does not 
change the plasmon frequency and hence does not change the physical properties of the system. The gauge 

transformation is equivalent to the transformation ~~
xki

e


   where 
~
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kkK  . Note the assumption for such 

a gauge transformation is for Hertzian waves only. If we relax the gauge condition then the plasma coordinate shift 
may indeed occupy a physical role and can accommodate non-Hertzian phenomena, which occur in plasmas. In fact, 
coherent effects are a major feature of the experimental results of superconductors, superfluids, and plasma 
collective states, sometimes termed “instabilities.” For superconductivity, there is remarkable and cogent evidence 
for the validity of the BCS formalism. Our two examples of dealing with the coherent phenomena of plasmon states 
and superconductivity seem well suited to the soliton model. It is through long-range collective states that these 
modes appear to act independently like a BEC condensate having a “mind of their own” [72]. 
 Electron-plasmon interactions have been demonstrated to have soliton properties in dense media as we have 
formulated here. Applications of the soliton solutions apply to a number of hydrodynamic type media. We will 
consider a dynamic picture of unbound “free” electron coupling to phonon or plasmon acoustic modes. As we have 
seen in earlier work (see references 5 and 27), we can formulate the phonon modes in terms of collective vertical 
modes of vacuum state electron-hole excitations. This formalism describes modes of excitation of the polarizable 
and active vacuum [5,40-42]. We consider a number of systems which have long-range coherent phenomena such as 
a solid-state room-temperature system, comprised of a regular array of positive ions and band layer electrons. Let us 
assume that we can describe an effective array of ions by a spacing parameter n , where n  is the thn  ion in the 
array [75].  
 We formulate the soliton model for a BCS type media. Let us consider a grand state 0  and a wave function 

  n
n

n  1  for the one dimension in space x. Then we can write an effective Hamiltonian as  
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where m  is the effective soliton mass. The term n  is the pseudo-velocity. Note that the use of a spacing parameter 
can be applied in a Monte Carlo random phase approximation to the approximately fixed ions of a plasma. Regular 
ionic spatial arrays can act as “wave guides” for standing longitudinal acoustic waves or as soliton transmission 
“conductors,” whether coherent states in plasma, ordered liquid, or solid state systems. 
 Returning to our formalism of references [3,44,45] in which we express the coupling between degenerate states 
in terms of torque and Coriolis terms in the Hamiltonian, we introduce the Coriolis effect in the kinetic energy terms 

and the torque and spin angular momentum in the potential energy terms. The coupling term  2g  of the 
Schrödinger equation, expressed with these considerations is given in terms of t /  where   and   represent 
modified metrical spacetime. The equation for one spatial dimension is given in terms of an interaction potential  

136.                 ,,2 tXVgV  .  
For one spatial dimension  
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for a potential free interaction and for effective-mass in the space with torque forces, m , and   is the complex 

conjugate of the wave function,  , giving the probability of 2  . 

 The diagonal element of the time evaluation operator in tx,  space corresponding to   is given as  
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where opt  and op  represent operators for t  and   and H represents the energy states of the system. 
 We expand the domain over which our operators can operate. This new space corresponds to our generalized 
metric  
139.               g ,  

and our new metrical space   ,,, tX  accommodates the torque and Coriolis forces. The nonlinear term in the 

potential  2g  incorporates the torque term and the term  ,, tXV  incorporates the Coriolis effect. The 
solutions to our new equation are given in terms of a new symmetric harmonic oscillator. In fact, these solutions are 
soliton-like. We detail this model in the next section. The additional terms in the Hamiltonian operator are nonlinear 
and act to overcome dissipative losses in the system through energy dissipation. Hence, torquing stabilizes the 
system whether in a motor or in galactic structures. This continuous action of the expanded spacetime gives rise to 
the dynamical but stable structures we have observed in nature and can be constructed in laboratory [77-79]. 
Coherent states give rise to soliton solutions which do not destructively interfere and hence represent a manner in 
which coherent states generated under torque forces produce a balance dynamic in black hole physics.  In such a 
system, the surrounding media and the central black hole form a constructive balance that allows stability to occur. 
 The lowest state 0  exists for the largest t  where first order “classical” terms dominate. We have  
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for opt  and op , where the subscript op stands for operator. We can now write an action variable 

associated with the usual space  tx,  and expanded space   ,  time evolution operators, so that we have 
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 ssHTH eexeex .  

The expanded ,, tx  “space” allows for collective coherent states operating over long distances and thus a 

mechanism for soliton creation and conduction in the media defining lattice-like vacuum structures. The terms se  
and se  are Boltzmann factors.  
 We can write the associated action variables in the linear approximation in which the coupling constant 2g  is 

small; that is the term  2g  is small compared to the spatial or temporal terms dependency of the potential term 

 ,,txV . This is the case where the effect of torque is not so great. Then  
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where the potential      ,v t  is associated with  ,, txV . The masses m  and m  are the associated 

effective-masses for the space  tx,  and space   ,  action terms, respectively. Let us consider a simple example 

of a harmonic oscillator potential in one spatial dimension as a first order approximation,   2
2

1 kxxV  , for the 
spatial dependence of the potential. Consider also that the time evolution operator,  , is proportional to finding a 
periodic path in the x  direction in a equilibrium ensemble of all periodic paths in which each coordinate n  relates 

to a static configuration of ions with two quantum degenerate configurations. The action terms s  and s  represent 

the energy of states   and  , respectively, as they appear in the Bolzmann factors.  
 Using the harmonic oscillator potential form   2

2
1 kxxV  , and a dependent Gaussian distribution for 

 x0 , we can determine an expectation value for the x  dependence of the particle coordinates n . This value is 
approximately the fluctuation range of the solitary wave. Slow variations in the ordered displacement within a 
crystal-like lattice correspond to long wavelength acoustic phonons. If we choose the phonon velocity to be of the 
order of the velocity of sound in the media, we find a size-scale expectation value of the solution to our nonlinear 

equation of 
o
A04.0  for a sixteen-site polyacetylene ring as an example. We determine that soliton or 
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coupled phonon phenomena occur in the range of 
o
A01.3.0  . This size scale varies somewhat with a cut-off 

parameter which defines the spatial domain of the phonon. We can define the mean square size of the fluctuations 

such that they are less than  2 . This technique avoids logarithmic divergences in a structured array. This 

formalism leads to the concept that the vacuum itself acts as an ordered array of lattice-like structures. 
 The periodicity of the system, its degeneracy, as well as the large degrees of freedom afforded by highly 
resonant structures, may depend ultimately on a structured vacuum model. Frequency, geometric configuration, and 
size scale are key to the development of coherent states of excitation of the system. Let us consider some examples 
of exciton states and superconductivity and superfluidity. 
 In order to understand the structure of quantum processes in highly curved spacetime, we can take some clues 
from condensed matter physics. In particular, some of the coherent states that arise in ordered lattices, such as 
phonons, may well describe the manner in which the vacuum acts as a medium. In reference [50], one of us 
(Rauscher) has demonstrated that although Einstein, in his relativity theory, believed there was no preferred frame of 
reference, the structure of the theory of relativity is consistent with a preferred frame of reference such as indicated 
by Mach’s principle. This picture of the quantized nature of spacetime acting as a “molecularized” granular fluid is 
consistent with the Heisenberg Uncertainty Principle and vertical pair production and vacuum state polarization 
from a non-empty vacuum. In the same body of work [50] an Ether concept is reintroduced as a neo-Ether having 
properties that support a quantum gravity model in a multidimensional geometry. Properties of this neo-Ether are 
identified with the properties of dynamic polarizable vacuums that support collective, coherent states of matter. In 
references [25,44,49,50] spacetime appears as an approximately continuous geometry, but at the quantum scale 
spacetime becomes “grainy” or structured, that is, quantized [25,44]. This picture yields an analogy between a 
vacuum “neo- Ether” which supports collective state phonon-like modes in a discrete fluid-like medium. 
 The other of us (Haramein) has introduced the concept of a structured vacuum arising from a spacetime torque 
and Coriolis effect driving specific coherent states of matter. Essentially, in analogy to a molecular fluid made up of 
discrete atomic or molecular “grains,” the hydrodynamic and charged structure of a spacetime manifold 
incorporating torque and Coriolis dynamics results in fluid structures with quantized discreteness [3]. This latter 
model acts as a “condensed matter state” arising from the lattice of a polarized structured vacuum, [47] where the 
“Ether-like” functions of spacetime are in fact a direct consequence of a driving torque producing solitons/phonon 
eddy-like structures defining granularity, such as the Planck quantities.  
 The startling and profound results of the recent Brookhaven Relativistic Heavy Ion Collider (RHIC) accelerator 
yields a surprising picture of a superfluid state of matter arising from the vacuum state energy structure, which is 
consistent with early Universe conditions and black hole physics [35,36] — giving us experimental verification of 
our theoretical model [65]. The phonon state arises when the internal agitation of molecules in the media are slowed, 
such as for low states near absolute zero, as in interstellar space. Phonons arise in crystal lattice structures and in low 
temperature fluids as experimentally observed in the laboratory. In a fluid which is moving in a non-uniform 

manner, the phonon velocity of propagation varies with the wavelength as 


2

v s . A parallel can be made 

between photons in a curved spacetime and phonons in an inhomogeneous medium. 
 An analogy is made by one of us (Haramein) describing sound waves in a stream of water entering the 
constriction of a drain. The acoustic phonons become distorted and follow the bending path, like light photons 
around a massive body such as a star. The fluid flow can act on sound in the same manner as a black hole does on 
light. In this analogy, it is clear that rotation occurs as the fluid enters the drain and so does light crossing the event 
horizon. Hence spacetime is not only quantized and granular, but also is torqued or under the influence of spin. In 
fact, it is the vacuum acting on the black hole from the torquing of spacetime-matter/energy that rotates or spins the 
black hole and expands the event horizon into an ergosphere. Further, the dynamic exchange between water and air 
(air is ejected to allow water to go down) in our “drain” analogy is the basis for our balance equation and is an 
analogue to the Coriolis energetics at the surface of the horizon. The recent data on fireball collisions at BNL’s 
RHIC and Hawking’s model support the fluid dynamic picture of the vacuum media as do the collective states 
developed in the plasma medium. In fact, all these coherent states of excitation in lattice structures, cool fluids, and 
plasma gases arise from the vacuum structure itself. At the interface of the horizon of black holes, the deepest and 
clearest manifestation of the polarized vacuum structure occurs.  
 One of us (Rauscher) had proposed in the early 1980s that there is a fundamental connection between the 
collective states that occur in plasma electron state dynamics and the collective electron states in superconductivity 
[72]. Although laboratory applications of this theoretical construct have not been made, it is only recently that the 
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CERN-RHIC and BNL-RHIC work has yielded an extremely fascinating application of the earlier theoretical work, 
which we have greatly expanded upon in this paper [65,66,68]. Collective state flows in heavy ion high energy 

GeV400 collisions have produced fluid dynamic-like quark-gluon plasma states [72,80-82]. Superdense 
hydrodynamic high viscosity states are formed which also exhibit Lattice QCD phase-like transitions [19,47]. These 
superdense states, of course, occur under strong gravitational conditions in the vicinity of a black hole. At the 
quantum extreme, the fluidity becomes granular at the Planck scale where the full quantum treatment is required. 
 Photons produced near a black hole have very short wavelengths resulting in experiencing the granularity of the 
fluid properties of the event horizon. Four major recent analogues of the properties of black holes have been made: 
first, the event horizon of the black hole carries phonon-like excitations; second, the properties of the event horizon 
act like superfluid helium with near zero internal resistance; third, electromagnetic phonon excitations occur at or 
near the event horizon; and fourth, Hawking-like radiation [35,37]. We can treat the black hole as a black body 
radiator where light quanta are emitted by harmonic oscillators as photons. The standard solutions to the 
Schrödinger equation are harmonic oscillator solutions. In the Hawking radiation model, photon excitation of pair 
creation and absorption is produced as the lowest state oscillation of the vacuum. The fact that photon emission 
occurs in Hawking radiation and from a black body radiator may allow us to better comprehend the physics and 
quantum effects at or just externally to the event horizon.  
 The soliton model may be a viable approach to explain the coherent states that allow the torquing mechanisms to 
maintain coherence in galactic structures. However, there is no reasonable manner to account for the existence of 
collective coherent phenomena, such as plasmons, phonons, acoustons, and excitons in apparent “free space.” In 
order to account for such phenomena, one needs to consider the origin of phonons and other coherent states in 
conventional physics. Such states normally arise in lattice structures which are set into vibratory modes, for 
example, sound phonon vibrations in structured or crystalline matter. Thereafter, by pursuing this manner of 
reasoning we can only conclude that, since these collective coherent states arise in the vicinity of a black hole, that 
the space in this region acts as a lattice structure. The Lindquist-Wheeler [19] approach appears most relevant in our 
consideration of the structure of black holes and their surrounding media.  
 Our approach to formulating the nature of black holes in astrophysical and cosmological space and their 
surrounding media dramatically demonstrates the possibility of deducing the detailed properties and structure of the 
vacuum. The collective, coherent modes of excitation and oscillation of the media surrounding black holes can only 
occur if they are structured by the excitation of the vacuum. These states and others are manifestations of the photon 
equivalent of phonon vibrations in a crystal lattice. We will now deduce the nature of that structure which seems to 
relate the double torus 22 UU   to a cuboctahedron and 4S . 
 
X. DEDUCING PROPERTIES OF THE STRUCTURED VACUUM 
 
From the results of our previous calculations, we are driven to the inevitable conclusion that the collective, coherent 
modes of plasma oscillations can only be supported by a structured vacuum. In this section, we discuss the evidence 
for a structured vacuum and the manner in which both the laboratory and astrophysical observations imply a 
particular structure of the vacuum as the most viable model.  
 Stable packets of charged particles moving collectively through spacetime is fundamental to plasma structures. 
These states occur through localized electromagnetic wave phenomena and can persist like solitary wave 
phenomena for a fairly long time. We have treated the particle coherent states or particle packet as warm or hot 
electron plasmas, analogous to a fluid state discussed in the previous sections. Plasma and fluid dynamics appear to 
be close allies in laboratory and astrophysical systems and applications. Each specific collective mode that we have 
formulated and discussed corresponds to specific velocities of propagation in the ionized media around the black 
hole event horizon. These modes act like indicators of the structural forms of the vacuum. Each one of the 
collective, coherent modes, such as plasmon, acouston, phonon, exciton, and Bose–Einstein condensate, have a 
specific mode of propagation. These relative propagation velocities are clues to the fact that the vacuum contains 
properties of a lattice structure. Each propagation velocity indicates a sub-structure of these lattice forms. These 
calculations indicate a set of lattice structures and sub-structures. We can deduce the form and nature of these lattice 
structures from the velocities of propagation of the collective, coherent states they sustain. Also, these lattice 
structures can be identified in the group theoretical framework.  
 Some of the respective velocities of propagation of the collective states which are sustained by the medium 
surrounding black holes are the plasmon at about sec/105 cm , the acouston at sec/104 cm , the phonon at about 

sec/102 cm , and the BECs which only propagate locally, condenses and exchanges energy with the media, and 
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then recondenses. These velocities are somewhat temperature-dependent. The temperature in the media outside the 
ergosphere is from Ko410  to Ko510 . Closer to the ergosphere the particle excitation energy increases and hence 
the temperature becomes higher. These temperatures can rise to Ko1010 near the horizon. Acoustons can exist in 
temperatures up to Ko510 . 
 In current cosmology, it is believed that at least 25% of all energy comes from black holes. The mistaken view is 
that black holes only consume energy and matter, but, in fact, they act like generators which excite the surrounding 
media, generating energy as heat. Giant black holes such as those near galactic centers of the order of AM610 or 
greater can also lead to stellar production. It is clear that black holes drive vast amounts of energy through them and 
contribute vastly to the dynamics of astrophysical systems. In fact, black holes may be the manifestation of the 
driving forces of spacetime torque and Coriolis torsional forces in the vacuum, expressing itself as galactic, stellar or 
even atomic structures. Thus, black holes may contribute to a large portion of the “missing mass” when accurate 
accounting has been made for the drive mechanisms necessary to produce the angular momentum/spin observable at 
all scales.  
 Dressler analyzed the evidence for massive black holes at galactic centers. The acceleration of gravity is, of 
course, greatly increased in the vicinity of the massive and unique objects in our universe [83,84]. Careful 
observation by Dressler found that stellar objects near galactic centers moved around the center at 

sec/000,300000,150 km  with closer ones moving more rapidly in their circular orbit. Careful analysis 
demonstrated the best interpretations of the results strongly indicate the presence of galactic center black holes 
including an approximately AM6103  massive black hole at the center of our Milky Way. Short  -ray bursts are 
observed daily and are thought to occur from supernovae explosions with jet propulsion on top and bottom 
perpendicular to their plane. Pulsars are thought to be the end product of supernovae production. Supernovae also 
produce visible, UV , x -ray and  -ray, emissions. We believe that supernovae structures are a major clue as to the 
dynamics of cosmological phenomena. In fact, these structures display the geometric form of matter fundamentally 
affected by the vacuum. Galactic formation and many other astrophysical structures are manifestations of the 
underlying vacuum structure and energy-driven processes.  
 In terms of coherent states which allow long range effects to occur that allow for the transmission of information 
over long distances, we have considered soliton states in plasmas, and we can consider the BEC formation in more 
detail. The BEC states also exhibit polyhedral configurations, thus information can be synchronized between the 
black hole external plasma field where Hrr   and the internal black hole states for Hrr  where Hr  is the radius 
of the event horizon. Bose–Einstein condensates (BEC) have been found to act like a soliton and move relatively 
long distances without spreading out. Strecker, et al. [85] and Khaykovich, et al. [86] have conducted experiments 
with lithium, 7Li , atoms, adjusting the inner atomic distances in tunable magnetic fields from repulsive forces to 
form a stable BEC, having weakly attractive forces. Wave packet dispersion is overcome by the self-focusing 
nonlinearity to form solitons.  
 In this section, we discuss the structure of the vacuum and the manner in which standing waves are set up and 
sustained in the media. It is clear that the coherent states that arise in the plasma media fundamentally depend on an 
underlying and periodic structure. This structure we identify as inherent in terms of the vacuum. If we define the 
Dirac vacuum as 0  the Fermi–Dirac model is relevant to the interpretation of plasma phenomena. The properties 
of the plasma depend on a structured polarizable vacuum which implies a spacetime metric that has an inherent local 
asymmetry and has global symmetry. The asymmetry is expressed not only by the structure of the vacuum but by 
the force torquing of the metric of the modified Einstein field equation with torque and Coriolis forces [3,44].  
 As the torquing properties of the metric are considered, in this case the Haramein-Rauscher metric, the vacuum 
becomes polarized and carries a fundamental spin-rotation. It is clear from the sustained collective plasma states that 
the biased vacuum is not only structured, but that it must also necessarily be dynamic. Coherent plasma states could 
not exist as localized waves due to nonlinear effects unless these nonlinearities and polarization properties existed 
within the vacuum structure itself. The so-termed fourth state of matter or plasma is the most plentiful state of matter 
in the Universe, occurring in cosmological interstellar media, and in stellar, supernovae, and black hole structures 
and other astrophysical features. The properties of plasma media most directly display the structure of a vacuum.  
 In reference [3], we have demonstrated that the double torus 22 UU  , resulting from an addition of spacetime 
torque and Coriolis effects in an Einsteinian metrical space, is fundamentally related, through the 24-element 
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octahedral groups,  OC and  OC , to the dual symmetry operations of the 4S  groups and the tetrahedron under 

the 4A  group. The dual torus dynamics are prominent across scales from quasars with their jets, galactic halos, 
black holes ergospheres, supernovae, to solar and planetary plasma phenomena. Furthermore, there seems to be 
evidence of tetrahedron/octahedron vacuum lattice structures defining large scale supercluster arrangements [87,88], 
supernovae internal plasma behavior [44], and planetary bands and vorticular energy events in gaseous planets 
which correlate well to these specific angular relationships, such as the bands on buth Jupiter and Saturn [89]. 
Recently, data returned from the Cassini probe confirmed the 26 year old earlier imaging by Voyager 1 and 2 of the 
presence of a persistent hexagonal feature on the north pole of Saturn [90]. The enormous vortex, approximately 
15,000 miles across, exhibits highly geometric boundary conditions where winds traveling at nearly 350 mph are 
turning the corners of a very well defined hexagon [90]. This feature and the recent discovery of a southern pole 
vortex extending deep into the gaseous interior of the planet, combined with clearly delimited banding divisions at 
latitudes that correlate well with an hexagonal 6488   cuboctahedral matrix, may be further evidence of the 
tetrahedral/octahedral polarized vacuum structure producing coherent collective behavior in the plasma of a torquing 
toroidal metric [3].  
 The cube and octahedron are dual to each other under the operations of the 4S  group and the tetrahedron is dual 
to the cube under the 4A  group. Note also that the icosahedron and dodecahedron are dual under the 5A  group. The 
simplest and lower dimensional group is the 24 elements of the octahedral group, O, rather than the 60-element 
icosahedral group, I. Hence, the most basic vacuum structure which can generate harmonic oscillator solutions is the 
cuboctahedron, which is the only geometry directly mappable to the double torus, 22 UU  , having four copies of 

1U . The movement from cuboctahedron to a pair of interpenetrating polarized tetrahedra (stella octangula) acts like 
a pumping action moving through rotation, from one state to another. This structure can exist in two extreme 
conditions: the cuboctahedron, which can collapse in orthorotation passing through the icosahedron and the 
octahedron to eventually reach the stella octangula [91] or dual tetrahedron, and back in harmonic oscillations. 
 In terms of harmonic oscillation solutions, we require a potential, V , and which can be expressed as a gradient 
so that 0

2 4 V . In this case the density is associated with 0  as a vacuum density expressed as a gradient of 

a potential. The potential, V , is the potential in the Hamiltonian, VTH  , for kinetic energy, T . As the 
cuboctahedron maps into the tetrahedron, the 4S  group is mappable to the 4A  group and oscillates in the two 
extreme modes in a harmonic oscillator motion. This motion works as a torquing pumping action in which the 
vertices of the cuboctahedron to the stella octangula and back form a phi spiral motion (resulting from the 
icosahedron relationship) reaching the end points of 4S and 4A . These end points are analogous to the end points 
of a pendulum which undergoes simple harmonic motion under gravitational potential. At the end points of motion, 
the system comes to rest at one vector equilibrium state and then proceeds to the other vector equilibrium state 
associated with the point of the pendulum motion where VH  . At the midpoint of the cycle, when the pendulum 
is vertical to the gravitational field, maximum kinetic energy states exist for TH  . This repeated cycle of 
oscillation generates harmonic oscillator state solutions. 
 The classic paper on the lattice cell universe by Lindquist and Wheeler [19], suggests that the homogenous 
isotropic closed Universe model be replaced with a Schwarzschild lattice closed Universe model. In the former case, 
the mass of the Universe is distributed uniformly and in the latter case, the mass is concentrated into 120 identical 
Schwarzschild black holes, each located at the center of its own cell. Each cell is a dodecahedron bounded by 12 
faces, each approximately a pentagon. Note that the dodecahedron is dual to the icosahedron under the 5A  group 
and that in our case the icosahedron is generated during one of the intermediary states of the cuboctahedron cycle of 
oscillation. In the model of Lindquist and Wheeler, many Schwarzschild zones are fitted together to comprise a 
closed Universe which is dynamic in that a test particle at the interface between two zones rises up against the 
gravitational attraction of each zone and falls back under the gravitational attraction of each zone. Therefore, the two 
centers themselves must move apart and back together again in sort of a breathing motion. This occurs for all pairs 
of centers, thus the lattice Universe itself expands and contracts, although the Schwarzschild geometry is viewed as 
static. Lindquist and Wheeler, approximate each lattice cell as an idealized sphere to simplify their analyses, in the 
same manner utilized in solid-state physics. In this approximation, the geometry inside each lattice is dealt with as a 
Schwarzschild sphere. This system is treated as expansion and re-contraction as independent Schwarzschild cells 
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unless they come too close together to coalesce. We have also considered a similar but unique crystal lattice model 

to explain the support of the plasma coherent states [20,47]. The maximum radius is 30 3
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 In addition to the structures of individual systems, there have been very interesting surveys conducted on the 
distribution of superclusters which displays a remarkable periodicity. Battaner [87] and Battaner and Florido [88] 
have considered the large scale structures of the order of Mpc100  which is the deepest survey with a resolution to 

Mpc10 . They observe a network array of galactic clusters. Systematic statistical analysis indicates a strong 
probability that these clusters form an octahedral array in which the octahedrons are in contact at the vertexes and 
thus creating cuboctahedrons. It is believed that the magnetic fields of the radiation dominated Universe comprises a 
network of filaments produced by early large scale magnetic fields and may have produced the octahedral array. The 
observation of these arrays appears to be more fundamental than pattern recognition, as they are such dominant 
features observed in the deep survey [92]. Then we have, 
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The Schwarzschild cell method predicts a cycloidal relationship between radius of the Universe and proper co-time, 
T , which was formulated by Friedmann [93]. Then sinar  , see equation (143). A path on a 3-sphere is given 

as 
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T
 . The relationship between the Lindquist and Wheeler Schwarzschild sphere and the vertices of the 

Battaner and Florido regular geometric structure of superclusters can be compared. For N  vertices, each vertex can 
be equidistant from its nearest neighbor only when N 5, 8, 16, 24, 120, or 600 [94]. The case where 8N  
yields the simplest arrangement. In this lattice, N 5, 16, and 600 correspond to a tetrahedron, N 8 to a cube, 

N 24 to an octahedron, and N 120 to a dodecahedron. Correspondence is made in terms of the ratio of the 
distance from a face to a corner of a cell of some volume of a regular polyhedron to a sphere.  
 One of us (Rauscher) [25] treated the whole Universe as expanding under a Schwarzschild condition. We found 
that consistence between Einstein’s field equations with big bang cosmologies can be obtained but requires the 
introduction of an additional term in the stress-energy tensor. We can associate this term with the torque term in 
Einstein’s field equations in the Haramein–Rauscher model [3]. One of us (Haramein), has put forward the need to 
include spin and torque to modify the simplistic Schwarzschild metrical zones of Lindquist and Wheeler although 
their model is very useful in our considerations even if it is clearly a limited case. 
 The motivation of the Lindquist and Wheeler model is that the cell method in gravitational theory contains a new 
dynamic feature which expresses the equation of motion of a mass at the center of a cell as a dynamic condition on 
the boundary of the cell. The boundary condition defines a constraint on the space which comprises simple 
geometric forms. The whole of the dynamics of this model are expressed in terms of the expansion and subsequent 
contraction of the Schwarzschild solution to Einstein’s field equation. Their analogy is to that of a crystal lattice and 
by defining cells in terms of a Schwarzschild solutions in a curved space, in a simple Friedman metric of uniform 
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curvature which corresponds to a polyhedron in Euclidian space. They derive a boundary condition on the 
Schwarzschild potentials which do not go to zero at a finite radius and hence avoids the discontinuity of matching 
the normal derivative of the gravitational potentials which would occur in the Schwarzschild solution alone. In the 
lattice Universe, mass is concentrated into N centers (or vertices) which could correspond to the galactic cluster 
centers in the Battener and Florido analysis [87,88]. In each cell, a Schwarzschild black hole is located at the center 
of its own cell. In their figure 3, six cone shapes define their boundary conditions in a lattice Universe and 
correspond to the vertices of an octahedron. Therefore, a parallel can be made between the work of Lindquist and 
Wheeler, Battener and Florido and our model which predicts a polarized structured vacuum. Hence, Lindquist and 
Wheeler’s approach using the Schwarzschild cell solution without spin or charge gives a good first-order 
approximation. We use the Kerr-Newman with spin and charge and incorporate the torque and Coriolis forces in the 
Haramein-Rauscher solution to quantize the vacuum into cells. 
 We consider the topological structures of the current string theory and our approach to the unified theory of the 
four forces and structured vacuum [3]. Although superstring theories have their critics, due to the fact that those 
theories contain a number of “free” parameters, there has been great interest in these theories by the physics 
community. Superstring theory has been related to the standard model. Some string theories contain gravity and 
others do not. One of the major features of superstring theory is to treat particles as tiny loops rather than as point 
particles so as to avoid the problem of singularities. The string theory approach has some topological similarities to 
that of Lindquist and Wheeler’s work, which is an effort to avoid singularities. In the string theory, particles are 
treated as vibrations of a membrane (Brane M surface), which is swept out by the vibrating string occurring in 
eight dimensional space. These eight dimensions comprise eight of the ten dimensional standard model in which two 
of the dimensions are the string surface itself. This vibrational space carries the symmetry of the Lie group 8E [95]. 
Superstring theory represents both bosonic and fermionic particle states. The usual string theories occupy a 26-
dimensional spacetime, representing bosonic particle states. A quantum state of identical bosonic particles is 
symmetric under the exchange of any two particles. A quantum state of identical fermionic particles is 
antisymmetric under the exchange of any two particles to include the photon and gravitation. Then we have 

6488   dimensional states in some superstring theories. The closed string theory is called a type II string 
theory, which has the doubly fermionic states included, for a total of 128882   fermionic states [96].  

 In addition to the type II, there are two heterotic superstring theories which involve closed strings. Out of 
the 26-L bosonic coordinates of the bosonic factor, only ten are matched to R-bosonic coordinates of the superstring 
factor, hence this theory effectively exists in ten-dimensional spacetime. Heterotic strings comes in two versions, 
that is 88 EE   and the )32(SO  type. The Ramond vacuum is included and 8E  is the highest dimensional 

exceptional group. The 88 EE   superstring theory is derived from the compilation of M theory. One of the 

most promising superstring theories that unifies the four forces is the 88 EE   reflection space. This is possible 

only because reflection embedding provides for an embedding of 4A  in 8E [97]. In our paper reference [3] we 

present the symmetry group relationship between 4A  and the 24 element octahedral group. This procedure operates 

along the lines of the relationship between the )32(SO  heterotic string theory which also utilizes the 88 EE   
formalism. However, we believe our approach to gravitation and strong interactions, which considers the inclusion 
of torque and Coriolis effects will result in a simplification and a more fundamental formalism with fewer free 
parameters.  
 In general, the Lie algebra nA  associated with a reflection space nC  has a compact Lie group 1nSU . S.P. 

Sirag attempts to develop a unified field theory in terms of 4321 SUSUSUU   where he identifies the 4SU  

group with the tensor gravitational field [98]. Note that gravity is missing from the 5SU  theory. The )32(SO , or 

32SO , is the group generated by 32-by-32 matrices that are orthogonal. For the strong force, gluons are described 

by a four dimensional 3SU Yang–Mills theory. The full set of standard model gauge bosons is described by the 

Yang–Mills theory with the gauge group 123 USUSU  . Alternatively, for the 325 SUSUU   Yang–Mills 

theory, the gauge group that emerges as 112323 UUSUSUUU   where 11 UU   is the topology of the 

torus. Note that the 4A  group of the tetrahedron is the label for a complex Lie algebra whose compact Lie group is 
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5SU  which comprised the first unification, GUT theory. The standard force bosons are derived from the group 

321 SUSUU   in the group algebra.  

 In the heterotic 88 EE   superstring theory, six of the nine spatial dimensions are curled up into a small six-
dimensional compact space, which is termed the Calabi–Yau space. All Calabi Yau spaces have both discrete and 
continuous parameters which determine the details of the four-dimensional theory that arises upon compactification. 
For all Calabi–Yau spaces, the minimal amount of supersymmetry survives the compactification and the resulting 
four-dimensional theory is supersymmetric. The compactification also allows one to break the original gauge 
symmetry 88 EE   down to 86 EE  . The group 6E  contains 123 USUSU   as a subgroup to that standard 
model gauge group. An alternative to the 6-dimensional space compactification of the heterotic string is an 
alternative 6-dimensional space where one can simply use a six-torus 6T group space. The 6T space, however, has 
singularities that arise at the fixed points of certain identifications, but orbitals constructed from tori are much easier 
to analyze than the general Calabi–Yau spaces. 
 For the following Lie group 6

2 TUS  where 2U  is a four dimensional spacetime called the conformally 

compactified Minkowski space and 6T  = 111111 UUUUUU  , or a 3-torus. We regard 2SU as a 

spherical three space, 3S , as the usual space of cosmology. For a 7-torus 7T which incorporates 1U  from the 

2U space also includes time. The 7T tori space corresponds to the 7-reflection space 7E  because LRT 77   

where 7R is the real part of the 7E  which also contains the complex reflection space 7C , and L  is the root of 7E . 

This means that all parts of the lattice are identified as a single point: the identity element of 7T  and every other 
point of 4T is a copy of L . The 4T  group can be identified with two double tori. We have identified the double 
torus structure as fundamental to a metric of spacetime which appropriately accounts for the source of spin/angular 
momentum. Many striking examples of this dynamic structure are observed at the cosmological scale such as 
galactic halos, black hole ergosphere and supernovae. 

 The 4S group is associated with the 24 element octahedral group  OC  which can be written in terms of 

  422
~ UUUOC   or 8T  group [3]. Both  OC  and  OC  relate to the 4T  double torus group of four copies 

of 1U  where nT is the direct product of n copies of 1U , which comprises the n  torus, which is always an Abelian 

group. The nT group refers to the structure of spacetime. We have related this spacetime structure to the torque term 
in Einstein’s field equations [3]. Hence, the torus topology can be considered fundamental to the structure of 
spacetime and also the tenets in the superstring theory. 
 Hull utilized string theory in a “T-fold-background” with local n torus fabrication and T duality transitions 
functions in  Z;, nnO  in an enlarged space with nT 2 fabrication geometry [99]. For a geometric background, the 

local choice of nT fit together to give a spacetime which is a nT fiber bundle. Thus this string theory approach 
involves diffeomorphisms and gauge transformations as well as duality transformations. The T duality is 
associated with mirror symmetry [100]. In some cases, the compactifications with duality are equivalent to 
asymmetric orbits. The full transition functions for the torus bundles, which are considered in Hull’s approach, are 
in   nUnGL 1, Z  where 1U acts as a translation on a circle fiber. String theory compactification of dimensions on 

the nT  has  Z;, nnO  symmetry. In the geometric  Z;nGL  subgroup that acts through nT  diffeomorphisms, 

can be lifted to a higher dimensional theory which is compactified on a nT  fiber bundled over a circle. A 
T duality on any circle gives a twisted reduction on a 2T  fiber bundled over a circle in  Z;2GL  which is 

representative of a dual torus. These mirror, or duality symmetries are related to space with Calabi–Yau fibrations in 
space with torus fibrations [99]. The topology of T folds, and their doubled formulations, is then seen as a 
geometric background in which there is a global polarization. The polarization can be characterized in terms of a 
product on the nT 2  fibers. Local product structures satisfy integrability thus eliminating the problems of 
singularities. A product structure defines a splitting into eigenspaces of R  with eigenvalues 1 and for a torus 
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nT 2 . This extends to a splitting as the periodic torus coordinates into two nT eigenspaces, if the product structure is 
integral, or ),2( ZnGLR , so that it acts on the coordinates while preserving the periodicities. A product 

structure and pseudo-Hermitian  nnO ,  invariant metric are together preserved by the subgroup 

 nnOnGL ,),( R  and for the transformations acting on the torus and is preserved by 

 ZnnOnGL ;,),2( Z  [3,5,20,47]. The fundamental structures activated in the vacuum by polarized coherent 
resonant states of matter also act as part of the process that creates these vacuum properties. To paraphrase John A. 
Wheeler, “Spacetime is not just a passive arena for doing physics, it is the physics” [2]. The torquing of spacetime is 
an active part of the structure of the stress-energy tensor and hence is a fundamental force coupling to produce the 
observable universe of matter and energy. 

 
CONCLUDING REMARKS 
 
We have a vast new set of tools to comprehend the processes of astrophysical and cosmological phenomena, atomic 
and collective matter states. For example some of the collective state phenomena we have considered are accelerator 
“fireballs,” Bose–Einstein condensates, Fermi electron states, MHD and BCS descriptions, all of which obey soliton 
dynamic solutions. Theoretical and experimental findings and relativistic formulations, quantum theory, 
electromagnetic interactions can well be described in terms of topological structures and group theory. The 
fundamental base of our approach is to consider that the topological structure of a torquing spacetime, and its 
Coriolis gyroscopic dynamics, has critical aspects of unification theory.  
 We pursue this point further in references [39,101,102] when we consider atomic, nuclear, and quantum physics 
in a nonlinear space. When a torque and Coriolis term is considered for the formation of spin/angular momentum we 
find that the dual torus topology occupies a fundamental role in both astrophysics and quantum particle physics. The 
Haramein–Rauscher approach takes spin and rotation properties as fundamental to the structure of the spacetime 
manifold. We have identified the properties of the structure of the vacuum itself from fundamental coherent 
polarized states of matter in the facility of astrophysical black hole event horizons. That is to say, we have 
demonstrated that the properties of matter in superclusters, galaxies, supernovae and their vicinities, for example, 
could exist in resonant states, only if the vacuum is structured. These considerations may also be utilized to explain 
the effects that are currently attributed to dark matter and dark energy.  
 In the words of Nobel laureate C. N. Yang, of the Yang-Mills equation “Einstein’s general relativity theory, 
though profoundly beautiful, is likely to be amended… that the amendment may not disturb the usual test is easy to 
imagine, since the usual tests do not relate to spin… somehow (the amendment) entangles spin and rotation” [103]. 
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	Abstract. The main forces driving black holes, neutron stars, pulsars, quasars, and supernovae dynamics have certain commonality to the mechanisms of less tumultuous systems such as galaxies, stellar and planetary dynamics. They involve gravity, electromagnetic, and single and collective particle processes. We examine the collective coherent structures of plasma and their interactions with the vacuum. In this paper we present a balance equation and, in particular, the balance between extremely collapsing gravitational systems and their surrounding energetic plasma media. Of particular interest is the dynamics of the plasma media, the structure of the vacuum, and the coupling of electromagnetic and gravitational forces with the inclusion of torque and Coriolis phenomena as described by the Haramein-Rauscher solution to Einstein’s field equations. The exotic nature of complex black holes involves not only the black hole itself but the surrounding plasma media. The main forces involved are intense gravitational collapsing forces, powerful electromagnetic fields, charge, and spin angular momentum. We find soliton or magneto-acoustic plasma solutions to the relativistic Vlasov equations solved in the vicinity of black hole ergospheres. Collective phonon or plasmon states of plasma fields are given. We utilize the Hamiltonian formalism to describe the collective states of matter and the dynamic processes within plasma allowing us to deduce a possible polarized vacuum structure and a unified physics.
	A.  Plasma Oscillations and a Description of Collective Behaviours
	E. The Role of the Vacuum Energy in Physical Processes
	A vast amount of energy is stored in the flux of the quantum vacuum. High energy processes such as high magnetic and gravitational fields near a black hole can activate and make observable the vacuum states. The vacuum energy has real physical observable consequences and its properties can be observed as having real physical effects [5,6]. These are extremely obvious in the vicinity of black holes.
	REFERENCES



