
Published in the International Journal of Computing Anticipatory Systems, D. Dubois (ed.), 
Institute of Mathematics, Liege University, Belgium, ISSN 1373-5411, 2007. 

 

 
 
   
 

SPINORS, TWISTORS, QUATERNIONS,  
AND THE “SPACETIME” TORUS TOPOLOGY 

 
 

Nassim Haramein† and Elizabeth A. Rauscher* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

†The Resonance Project Foundation 
P.O. Box 764 

Holualoa, HI  96725 
haramein@theresonanceproject.org 

 
*Tecnic Research Laboratory 

3500 S. Tomahawk Rd, Bldg. 188 
Apache Junction, AZ  85219 

bvr1001@msn.com 
 



 2 

ABSTRACT 
The dual torus topology occupies a central role in the spinor, twistor and quaternionic 

formulation.  This topology appears to be ubiquitous in astrophysical and cosmological 
phenomena and is predicted by the 4U bubble of the affine connection in the Haramein-
Rauscher solution to Einstein’s field equations.  The geometric structure of the complexified 
Minkowski space is associated with the twistor algebra, spinor calculus, and the nSU  groups 
of the quaternionic formalism.  Hence quantum theory and relativity are related 
mathematically through the dual torus topology.  Utilizing the spinor approach, 
electromagnetic and gravitational metrics are mappable to the twistor algebra, which 
corresponds to the complexified Minkowski space.  Quaternion transformations relate to spin 
and rotation corresponding to the twistor analysis.   
 
1. INTRODUCTION 

In this paper we will present a formalism that uniquely relates electromagnetic and 
gravitational fields.  Through this formalism and the relationship of the spinor calculus and 
the twistor algebra we can demonstrate the fundamental conditions of such a system which 
accommodates macroscopic astrophysical phenomena as well as microscopic quantum 
phenomena.   

The generalized hyperdimensional Minkowski manifold has nonlocal as well as 
anticipatory properties.  We have examined elsewhere the topology of the torus 111 UUT   
and the dual torus 11 TT   related to astrophysical systems such as galactic structures, black 
hole ergospheres, and supernovae phenomenon, etc.  Here we discuss the 720 ° symmetry of 
the so-termed Dirac string trick within the context of the relativistic form of the Dirac 
formalism and the relationship to the dual-torus topology.  Twistors and spinors are examined 
and are applicable to the quaternion formalism.  The quaternion formalism can be related to 
the hyperdimensional complexified Minkowski space, Lie groups nSU , as well as 
Reimannian topologies and the Dirac equation.   

In Section 2., we present the formalism for the role of the spinor calculus which is utilized 
to relate the expression for the metric tensor to gravitational and electromagnetic field 
components through the relationship of the twistor algebra and spinor calculus.  The 
Minkowski space formalism consistent with this approach uniquely relates to the twistors 
and, as we demonstrate in Section 3., to the dual torus topology.  In this section, we 
demonstrate the manner in which the approaches presented in this paper relate to the current 
supersymmetry and GUT models as well as string theory.  We further elaborate on the 
symmetry principles of the complexification of Minkowski space, twistors and their 
properties. 
 Some unique features of the torus topology and its associated vector space are given 
in Section 4.  A fundamental relationship between the complex Minkowski space, the twistor 
algebra and quaternions are developed in Section 5.  Of interest are the non-Abelian nature of 
quaternions, the nSU  groups, and quantum theory’s relation to tori and other topologies.  The 
basic structures of these spaces demonstrate a set of connections between the dual torus 
topology and a fundamental structure of “spacetime” leading to the Haramein-Rauscher 
solution. 
 
2.  THE SPINOR FORMALISM AND UNIFICATION AND THE RELATIONSHIP TO 
TWISTORS AND THE TORI TOPOLOGY 

The approach to unification of the electromagnetic and gravitational fields was 
developed by Kaluza [1] and Klein [2] in the 1920s and their work was seriously considered 
by Einstein in the 1930’s.  This five-dimensional geometry utilizes the spinor calculus to 
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account for the coupling of the electromagnetic field to the gravitational field, in which the 
spinor is treated as a rolled up dimension rather than as the four extended dimensions of the 
gravitational field.  The concept of small rotational "extra dimensions" is accepted in current 
ten and eleven dimensional supersymmetry models, and the Kaluza-Klein Theory is treated 
as a subset of this supersymmetry, including the grand unification theory (GUT).  

The Kaluza-Klein Theory requires the periodicity of the five-dimensional spinor 
fields to unify electromagnetism and gravity based on the homomorphism between the 
Lorentz group and the unimodular transformation of Maxwell’s equations and the weak Weyl 
limit of the gravitational field.  A discussion of the Kaluza-Klein model and the Rauscher [3] 
and Newman [5] and Hansen and Newmann complex eight-space is given in reference [6].  In 
the approach of these later three references, the spinor calculus is demonstrated to be 
mappable one-to-one with the twistor algebra of the complex eight-space and, hence, the 
Penrose twistor [3]. 

The coupling of the electromagnetic field with the gravitational field in the Kaluza-
Klein may also yield a connection through the photon description of the twistor algebra.  The 
photon is the quanta of the electromagnetic field and the interaction mediation between 
leptons, of which the electron is one. The five-dimensional spinor calculus has been 
developed within the five-dimensional relativistic formalism [1, 2, 3].  The spinor calculus 
developed in the five-dimensional spinor formalism accounts for the coupling of the 
electromagnetic field to the gravitational metric.  

This approach is manifestly five-covariant in a special five-dimensional space.  The 
specific spin frames of reference of the five-dimensional Kaluza-Klein geometry reduces to 
the spinor formalism of curved spacetime.  The theory of spinors in four-dimensional space is 
based upon the transformation L  and the group of unimodular transformation 1U  in 

 CSL ,2 .  Elsewhere we have related this formalism to the toroidal space  11 UU    [7].  
Unimodular action of the symplectic automorphism group  RSL ,2  of the Heisenberg 

two step nilpotent Lie group, N has the discrete subgroups  ZSL ,2  of   RSL ,2 .  The two-
dimensional compact unit sphere = 2S  (Riemannian sphere) and the three-dimensional 
spherical component unit sphere can map as 4

3 RS  .   
It has been established that the five-dimensional 4-component spinor calculus is 

related to the four-dimensional spinor formalism in order to account for the coupling of the 
electromagnetic field as a periodic five-dimensional spinor field to the curved space of the 
gravitational Riemannian metric.   We can utilize projection geometry to relate five-
dimensional spinor calculus to the four-dimensional twistor space. 

An isomorphism between vectors  v  and spinors  AAv   satisfies the condition   
   AAAA         (1) 

so that the spinor equivalent to a vector v  is   
 

 vAAAA         (2) 

where AA 
   is a tensor.  

Therefore,   
     AA

AAv 
        (3) 

where  v  is real for  AAAA    .  The covering map  CSL ,2  goes to  3,1O  by using the 
vector-spinor correspondence.  

We present some of the properties and structure of this significant advancement in 
developing a unified force theory for the electromagnetic and gravitational fields, which we 
demonstrate are related to the twistor algebra and torus topology [7].  In addition to the 
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general coordinate transformations of the four coordinates  x  , the preferred coordinate 
system permits the group relation, 

         432155 ,,, xxxxfxx  .    (4) 
Using this condition and the five-dimensional cylindrical metric or  ki

ik dxdxds 2   
yields the form         

     



 dxdxgdxdxds 

2
5

52     (5) 
where the second term is the usual four-space metric.  The quantity 5   in the above 
equation, transforms like a gauge [10, 11] 

              
x
f




 55         (6) 

where the function  f   is introduced as an arbitrary function.  Returning to our five-
dimensional metrical form in its five compact form and four- and five-dimensional form 
gives, 

           55    g .    (7) 

Proceeding from the metrical form in a "cylindrical" space, ki
ik dxdxds 2   where 

indices ki,   run 1 to 5, we introduce the condition of cylindricity which can be described in a 
coordinate system in which the ik  are independent of 5x or  

                        05 



x
ik .    (8)   

Kaluza and Klein assumed  155    or the positive sign  055   for the condition of 
the fifth dimension to ensure that the fifth dimension is metrically space-like.   In geometric 
terms, one can interpret  5x  as an angle variable, so that all values of 5x  differ by an integral 
multiple of  2  corresponding to the same point of the five-dimensional space, if the values 
of the x  are the same.  Greek indices ,  run from 1 to 4, and Latin indices ki,  run from 
1 to 5 and for this specific case, each point of the five-dimensional space passes exactly one 
geodesic curve which returns to the same point.  In this case, there always exists a 
perpendicular coordinate system in which 155    and  

05
5 




x


.    (9) 

It follows from those properties that g  and ik  can be made analogous so that 

ikg      then  

    55
55 1 

         (10a) 
(also see equation (7)) and   

5
5


  g .    (10b) 

The gauge-like form alone is analogous to the gauge group, which suggests the identification 
of  5  with the electromagnetic potential,  . We can write an expression for an 
antisymmetric tensor,   





 

f
xx









 55      (11)    

which is an invariant with respect to the "gauge transformation".  
We now use the independence of ik  of  5x  or 05  xik .  The geodesics of the 

metric in five-space can be interpreted by the expression   
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C
ds
dx

ds
dx




 5

5

      (12) 

where C   is a constant and s  is a distance parameter.  If we consider the generalized five-
dimensional curvature tensor, and using the form for f  we can express it in terms of F , 
the electromagnetic field strength,   


 F
c

Gf 4
16

       (13)  

where   F
cG 14    where F   is the quantized force introduced by Rauscher  

[12, 13, 14] which relates to the driving force for the expansion of the universe.  Furthermore, 
this force term F is utilized in the Haramein-Rauscher solution to Einstein’s field equations, 
which incorporates torque and Coriolis effects (see equations (39) to (44) in reference [7]).  
In work in progress, it appears that the topology of the fluid dynamics of the Haramein-
Rauscher solution lead to a dual torus topology.  Then we can write, 

 
4

16
5 c

G
 .     (14) 

The integration constant, above, can be identified as proportional to the ratio me  of charge 
to mass of a particle traveling geodesics in the Kaluza-Klein space [3]. 

Under the specific conditions of the conformal mappings in the complex Minkowski 
space, one can represent twistors in terms of spinors.  The spinor is said to "represent" the 
twistor.  The twistor is described as a complex two-plane in the complex Minkowski space 
(see Section 3 and see reference [3] and references on twistor theory and the spinor calculus 
cited in this reference).  Twistors and spinors can be easily related by the general Lorentz 
conditions in such a manner as to retain the condition that all signals are luminal in real four-
space.  The conformal invariance of the tensor field, which can be Hermitian, can be defined 
in terms of twistors and these fields can be identified with particles [15]. 

It is through the representation of spinors as twistors in complex Minkowski space 
that we can relate the complex eight-space model to the Kaluza-Klein geometries and to the 
grand unification or GUT theory.  In the five-dimensional Kaluza-Klein geometries, the extra 
dimension is considered to be a spatial rotational dimension in terms of  5  .  The Hanson-
Newman [6], Rauscher [3, 4], and the later Haramein-Rauscher [7, 8] complex Minkowski 
space has introduced with it an angular momentum or helix or spiral dimension called a 
twistor which is expressed in terms of spinors.   

The spinor formalism was used by Dirac to define the Schrödinger equation in a 
relativistic invariant form so that the complex scalar time dependent field of Schrödinger is in 
terms of a two component spinor field.  Using this formalism Dirac obtained a two-valued 
solution which predicted the observed electron and positron pair.  The spinor field or spinor 
variable, utilized in the Kaluza-Klein geometry, directly relates to the spin degrees of 
freedom that are observed by the Zeeman effect in atomic spectra.  The spin degrees of 
freedom appear to be fundamental to quantum theory and to relativity and are a good starting 
point to treat spin in a fundamental manner.  The Lorentz four-space representation of 
relativity can be reduced to the direct product of two two-dimensional complex 
representations.  The spinor variable is the most fundamental representation of a 
relativistically invariant theory and spin degrees of freedom may be formulated 
relativistically and, hence, also in a possible "quantum gravity" picture which applies to the 
Dirac equation.  This approach may be applicable to the Penrose twistor. 
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We have introduced torque and Coriolis forces in Einstein's field equation to form an 
expression for the spin driving forces that we observe in a vast variety of cosmological, 
classical, and quantum domain phenomenon [7].  This approach appears to fit well with the 
spinor approach in the Dirac formalism in the quantum domain, that is, that the Lorentz 
conditions applied by Einstein in relativity may be the origin of the spinor and, hence, be the 
fundamental theory that yields the spinor formalism and the role of spin in physical 
phenomena [7].  Other implications of the relationship between the Penrose twistor 
formalism and the complex Minkowski space, which includes anticipatory systems and 
nonlocality, are given in references 23-27. 

 
3. THE PENSROSE TWISTOR AND HARMONIC TORI SEQUENCING AND 

PARTICLE SPIN 
 Interest in the twistor program has been in the form of quantizing gravity in order to 
unify the physics of the micro- and macro-cosmos in 1971 and 2005.  Such a procedure has 
been taken by Penrose, et al. and is based on the concept of a more general theory that has 
limits in the quantum theory and the relativistic theory [22, 28].  In addition, there have been 
approaches to the underlying structure of spacetime in the quantum [17] and structural regime 
[12].  A structured and/or quantized spacetime [12, 28] may allow a formalism that unequally 
relates the electromagnetic fields with the gravitational metric [7, 8, 9,13].   Feynman [19, 29] 
and Penrose graphs [17, 30] may overcome the divergences of such an approach.  In order to 
translate the equations of motion and Lagrangians from spinors to twistors, one can use the 
eigenfunctions of the Casimir operators of the Lie algebra of  2,2U  [30]. 

For the simplest case of a zero rest mass field (photon-like) for 2n  spin for 0n , 
we can write   

    0...  
NA

AA       (15) 
for  NA,....,  written in terms of N  indices, and for 1N , we have the Dirac equation for 
massless particles.  For a spin zero field, we have the Klein-Gordon equation   

    0 
 AA

AA     (16) 
and in equation (15) for 2n , we have the source-free Maxwell equation □ 0F  for spin 
1 or 1U  fields, and for 4n , we have the spin free Einstein field equations, 0R .  The 

indices   and    run  0 to 3.  For a system with charge, then  □ 
 JJF   , or this can 

be written as  


 J
x

F



 and then we can write 

     



 J

x
F



  .    (17) 

In this section, we outline a program to relate the twistor topology to the spinor space 
and specifically to the Dirac spinors.  Both Fermi-Dirac and Bose-Einstein statistics are 
considered.  The relationship between twistor theory and the Dirac “string trick” model leads 
a dual torus topology.  This topology appears to have, as well, astrophysical consequences 
such as the Haramein-Rauscher solution to Einstein’s field equations and observational data 
in supernovae dynamics, black hole ergospheres, galactic structures, etc.   
 The Penrose spin approach is designed to facilitate the calculation of angular 
momentum states for SL(2).  The spinor formalism, in the Dirac equation, established spinors 
within quantum theory.  The twistor formalisms are related to the structure of spacetime and 
the relation of the spinors and twistors is also of interest because it identifies a relationship 
between quantum mechanics and relativity [17, 18, 30, 31]. 
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Twistor theory has been related to conformal field theory and string theory [31].  
Also, twistor theory has been related to quaternions and complex quaterionic manifolds [32, 
33].  The projective twistor space, PT, corresponds to two copies of the associated complex 
projective space of  3CP  or  33 CPCP   [31].  It is through the conformal geometry of 
surfaces in 4S , utilizing the fact that 3CP  is an 2S  bundle over 4S ,  that quaternions can be 
related to twistors [34]. 

We can demonstrate a useful relationship between the complex eight-space and the 
Penrose twistor topology; the twistor is derived from the imaginary part of the spinor field. 
The Kerr Theorem results naturally from this approach in which twisting is shear free in the 
limit of asymptotic flat space.  The twistor is described as a two-plane in complex Minkowski 
space, 4M .  Twistors define the conformal invariance of the tensor field, which can be 
identified with spin or spinless particles.  For particles with a specific intrinsic spin,  s , we 
have s2 

 , and for zero spin, such as the photon, 0 
  where   is the Hermitian 

conjugate of  , and   and    can be regarded as canonical variables such as x , p  in 

the quantum theory phase space analysis.  The twist free conditions, 
  ,  hold precisely 

when    is a null twistor.  The upper case Latin indices are used for spinors, and the Greek 
indices for twistors.  The spinor field of a twistor is conformally invariant and independent of 
the choice of origin [35].  For the spinor, the indexes A  and  A  take on values 1, 2 (see 
references [17, 18]).  We briefly follow along the lines of Hanson and Newman in the 
formalism relating the complex Minkowski space to the twistor algebra [6].   

Twistors and spinors are related by the general Lorentz conditions in such a manner as 
to retain the fact that all signals are luminal in the real four-space, which does not preclude 
superluminal signals in an 4N  dimensional space.  The twistor   can be expressed in 
terms of a pair of spinors,  A  and  A , which are said to represent the twistor.  We write   

     A
A

  ,       (18) 
where  A

AAA ri 
   

Every twistor   is associated with a point in complex Minkowski space, which 
yields an associated spinor, A ,  A .  The spinor is associated with a tensor which can be 
Hermitian or not.  The spinor can be written equivalently as a bivector forming antisymmetry.  
In terms of spinors A  and  A , they are said to represent the twistor    as  A

A
  ,   

(see equation (18)).  In terms of components of the twistor space in Hermitian form,   for  

AAAA   ,  we have, 

      13023120     (19)  
where the   index runs 0 to 3.  The components of    are 3210 ,,,   and are 
identifiable with a pair of spinors, A  and  A ,  so that   

           1 ,  2
0  ,  3

1       (20)  
so that we have   

   
10

010
0

'1


  .   (21)      

Note that the spinor A  is the more general case of A .  This approach ensures that the 
transformations on the spin space preserve the linear transformations on twistor space, which 
preserves the Hermitian form, . 
 The underlying concept of twistor theory is that of conformal invariance or the 
invariance of certain fields under different scalings of the metric g .  Related to the Kerr 
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theorem, for asymptotic shear-free null flat space, the analytic functions in the complex space 
of twistors may be considered a twisting of shear-free geodesics.  In certain specific cases, 
shear inclusive geodesics can be accommodated.  We consider the shear modulus W and a 
spacetime torque term   as the source of the shear inclusive geodesics in the stress energy 
tensor of Einstein’s field equation in reference [7].   
 Twistors are formally connected to the topology of certain surfaces in complex 
Minkowski space 4M .  This space, the complex space 4C , is the cover space of 4R , the four 
dimensional Riemannian space.  On the Riemann surface, one can interpret spinors as roots 
of the conformal tangent plane of a Riemann surface into 3R . This approach is significant 
because it ensures the diffeomorphism of the manifold.  Complexification is formulated as 


ImRe XX  ,  which constitutes the complexification of the Minkowski space, 4M .  The 

usual form Minkowski space is a submanifold of complex Minkowski space.  Twistors are 
spacetime structures in Minkowski space, which is based upon the representation of twistors 
in terms of a pair of spinors as we have shown [4, 21].   Twistors provide a unique 
formulation of complexification.  The interpretation of twistors in terms of asymptotic 
continuation accommodate curved spacetime.  One feature of this approach to quantum 
theory in twistor space leads to a quantum gravity theory [21].  

This spinor representation of a twistor makes it possible to interpret a twistor as a 
two-plane in complex Minkowski space, 4M .  Then we can relate A  and  B  so that AA   
is a solution as 

     B
BAA i 
       (22) 

for the position vector BA   in the complex Minkowski space.  We can also consider the 
relationship of AA   and A to a complex position vector as   
           AAAAAA         (23) 
where  A   is a variable spinor.  Just as in the conformal group on Minkowski space, spin 
space forms a two-valued representation of the Lorentz group.  Note that 2SU  is the four 
value covering group of C  2,1 , the conformal group of Minkowski space.  The element of a 
four dimensional space can be carried over to the complex eight-space. 

For spin, n  the Dirac spinor space is a covering group of nSO  where this cohomology 
theory will allow us to admit spin structure and can be related to the 2SU  Lie group.  Now let 
us consider the spin conditions associated with the Dirac equation and further formulate the 
manner in which the Dirac "string trick" relates to the electron path on the double torus 
topology.  

For a spin, 2
1s  particle, the spin vector   pu  is written as 








0
1

  and  







1
0

 for spin 

up and spin down and p is momentum.  For a particle with mass we have for 1c ,    

   02 














 


 mc
x

ci      (24) 

for the time independent equation, and we can divide Eq. (24) by ci  and have, 

     0

















 

mc
x

      (25) 

where   mck   and    ci  where indices   run 0 to 3.  The dependent Dirac 
equation is given as, 
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    02 



















t

imc
x

ci 





 .   (26) 

The solution to the Dirac equation is in terms of spin  pu   as   

             Etxpiepu 


     (27) 

the Dirac spin matrices   ci .  The spinor calculus is related to the twistor algebra, 
which relates a two-space to an associated complex eight-space (see references [37, 38]).  
An example of the usefulness of spinors is in the Dirac equation.  For example, we have the 

Dirac spin matrices,  



 




 i









0
0

  where terms such as   51     come into the 

electroweak vector-axial vector formalism.  The three Dirac spinors (also called Pauli spin 
matrices) are given as 

   
01
10

x , 
0

0
i

i
y


  and  

10
01


z     (28) 

and  3210
32105  ii    for   0   is given as, 

      
























1000
0100
0010
0001

0       (29) 

for trace  0tr , that is, Eq. (29) can be written as, 

        










2

2
0 0

0
I

I
      (30)  

where we have the 22  spin matrix as   
10
01

2 I .   Note that the Dirac spinors are the 

standard generators of the Lie algebra of 2SU .  
 The commutation relations of the Dirac spin matrices is given as  

     
~

, Iig   


     (31) 

and   gdetdet    where  g  is the metric tensor.  The Dirac spin matrices come into 

use in the electroweak vector-axial vector model as  51     for  5   as, 

           3210
32105  ii       (32) 

where indices run 0 to 3. 
 We can also write, 

             





n

inxn exxx
5

,5 



     (33) 

which expresses some of the properties of a five-dimensional space having 32,10 ,,    and  

5 .  Note that 5  is associated with a five-dimensional metric tensor.  This five-dimensional 
space passes exactly one geodesic curve which returns to the same point with a continuous 
direction.  Note that this is a similar formalism to that of the Dirac string trick 720 path 
which can be mapped to the surface of a double torus.  
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 A connection can also be made to the electromagnetic potential; and the metric of the 
Kaluza-Klein geometry.  We can express 5  in terms of a potential   so that  

       25       (34)   

where  F
 8  and where  G

cF
4

  or the quantized cosmological force [7,12 , 13] (also 

see equation (14)).  Then we have a five-space vector as, 

      

























1
0
0
0
0

5 .     (35)  

Through this approach, we can relate covarience and gauge invariance [21]. 
 Using Poisson's equation,   

     0
4

2
1  c     (36) 

where again F
 8  as above.  The electromagnetic field, F , can be expressed as, 

             







xx

F







     (37) 

which yields an interesting relation of the gravitational metric to the electromagnetic field.  

Also the Lagrangian is given as  
 FFL

2
1

  so that  gL L  for the metric g .  Note 

dgL  ,  where d  represents a four space.  Now let us return to our discussion of the 
twistor algebra and relate it to the spinor calculus.  The Penrose twistor space also yields a 
five-dimensional formalism as is also formulated by the Kaluza-Klein theory. 

Both projective and non-projective twistors are considered as images in a complex 
Riemannian manifold in its strong conformal field condition.  Duality, analytic continuation, 
unitary and other symmetry principles can be incorporated by using appropriate (Bose-
Einstein or Fermi-Dirac) spin statistics in analogy to the Hartree-Fock spaces or Fock space.  
Particles can be considered as states as the Fock space elements or the "end" of each 
disconnected portion of the boundary of the manifold.  
 The quanta are associated with a quantum field of particles that carry both momentum 
and energy.  The total energy Hamiltonian can be defined in terms of a number of simple 
phonon states which can be expressed in terms of 

na creation and na  destruction operator 
states.  Since all creation operators commute, these states are completely symmetric and 
satisfy Bose-Einstein statistics.  Such phonon states, having a definite number of phonons, are 
called Fock states, which is the vector sum of the momentum of each of the photons in the 
state.  The ground state 0  can be considered the photon vacuum state or Fock state where 
the photon is taken as a phonon state.  The creation and destruction operators commute as 
  nnnn aa 

  ,  for the delta function nn   [39]. 
 In this picture, we can consider an n -function as a "twistor wave" function for a state 
of n -particles.  Penrose [17] considers a set of n -massless particles as a first order 
approximation.  We form a series on a complex manifold as elements of the space nC  as 
              ...,,,,,,, 3210

 xyzfyzfzff    (38) 
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which are, respectively, the 0th function, 1st function, 2nd function, and 3rd function, etc. of the 
twistor space, which are also elements of nC .  We can also consider ....,,,, 3210 ffff   as 
the functions of several nested twistors in which 0f  is the central term of the wave of the 
twistor space.  We can say that these nested tori can act as a recursive sequence.  In work in 
progress we consider a recursive fractal function of nested tori, that may be best expressed in 
fractal quaternions [15], to define the magnetohydrodynamic structure of spacetime at all 
scales (see reference [8] for related work).  
 Penrose [17, 18] suggests that, to a first approximation, 1f  corresponds to the 
amplitude of a massless, spin 1 particle, 2f  to a lepton spin ½ particle, and 3f  to Hadron 
particle states, and 4f  to higher energy and exotic Hadron particle states.  Mass results from 
the breaking of conformal invariances for nf  for 2n or greater, similar to the S metric 
approach [40].  The harmonic functions nf  form a harmonic sequence, where nf  for 2n  
form the Fermion states, and nf  for 3n  form the Hadron twistor states.  Essentially, in the 
twistor space, we have a center state 0f  around which ...,, 21 ff  occur.  Each of these 
sequences of waves forms a torus, hence, 1f  and 2f  form a double nested tori set consistent 
with both spin 1 and spin ½ particle states where all  n  states are elements of the twistor, z , 
as  zn . 
 In the specific case of a massless particle with spin for 1f , the two-surface in complex 
Minkowski space corresponding to the twistor represents the center of mass of the system so 
that the surface does not intersect the real Minkowski space.  This reflects the system's 
intrinsic spin.  We see an analogy to the triple tori Calabi-Yau string theory [41]. The higher 
order nf  may describe higher order string modes or oscillations of  0

 ZZ  or 0f . This 
occurs for the case using ,, 21 ff and 3f  and, hence, all known particle states.  

We can consider the topology of three Penrose projective twistor states which are 
PT , PT , and PT .  The PT , and PT  are meant to represent the domain of PT  where 
we denote these two states in which  1)(-1, are elements of t where   is small.  We denote 
two line elements which are denoted in terms of twistors as a surface on the sphere 3S  as 

PT  which corresponds to 0
 tt

ZZ 
   and  0

tt
ZZ 

   for 1t  for PT , and PT  gives  

11  t .  These two branches correspond to a transformation matrix, 

     



















100
010

010
001

t
t

t
t

.    (39) 

This gives us a translation formulation for vectors into the states of spinors in terms of t , in 
terms of the spinors 

    







































































1

0

1

0
1
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which is 
tZ  and 1~ t  since   is small. Then in terms of twistors,   
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          B
ABAA f







ˆ       (41) 

for  AA   ̂   where   and   are orthogonal spinors.  The term  B
AB f





   is small 

compared to A  and A   since    is small.  The unit spinors or vectors are  Â  and Â  for 
both  2,1, BA . 
 The projective twistor space, PT , corresponds to two copies of 3CP , which has an 
associated complex projective space.  The PT  space is the space which yields the torus 
topology of the Riemann surface of genus 1g .  The genus 1 topology contains one "hole" 
or singularity, genus 2, two holes, etc.  The two-hole system is a continuous manifold which 
can represent two connected tori or a double torus producing an equatorial planar membrane. 
This topology is related to the high-energy plasma dynamics found around black hole 
ergospheres and their equatorial accretion disks. It is, as well, observed in stars, and gas and 
dust circulation within galactic disks and halos.  Observation of double tori topology at the 
cosmological level may, as well, be evidence of a structured polarized vacuum interacting 
with the high energy plasma dynamics at these scales [8].     
 
4. SOME CONSIDERATIONS OF THE UNIQUENESS OF VECTOR SPACE AND 

TORUS TOPOLOGIES 
 We explore some unique features of the torus topology and their possible vector 
spaces.  We consider the relationship between the 11 UUT   group and the 2S  group.  An 
example of the n - dimensional manifold, which is not a product of n -one-dimensional 
manifolds, is given by the sphere nS .  When one deals with two or more real or complex 
variables, there is usually a manifold, M , on which these functions are definable.  We 
explore some of the unique surface features of the torus topology and compare them to the 
Euclidian spherical topology.  The surface of a sphere of unit radius in three-dimensional 
Euclidian space , 2S , can be triangulated on the boundary of a tetrahedron.  For the torus, T , 
its triangulation, K , consists of seven 0-simplexes and fourteen 2-simplexes.  The 
contractable one-dimensional sub-polyhedron of K  contains all verticies of K .  The two 
generators commute so that the torus group is generated by the two commuting generators 

ZZ ~ (see Section 5). 
 The manifold nT  is the n - dimensional torus.   If 2n , then 112 SST   defines a 
torus.  The torus is a subset of 3R , where R  is the topology on the real numbers.  The sets X  
and  Y  are called the topological space.   If X is a set as a discrete topology, then Y can be a 
collection of all subsets of X , i.e., the set x2 .  Any finite or infinite subcollection  Z  of the 

X  has the property that YZ i , or the union of iZ are elements of Y .  The torus is a 

subset of 3R ,  and 112 SST   is the Cartesian product of two subsets of 2R  so that it is at 
least a subset of 422 RRR  .  The torus, which is in 3R , is not flat, but the torus 11 SS   in 

4R  can be considered flat.  Interestingly, the topology of the two tori are the same, which has 
to do with the precise definition of flatness and curvature. 
 The definition of curvature depends on the specification of a Riemannian metric [42].  
Once we specify the Riemannian metric as we have done in reference [7], then we can define 
our flatness of 2T .  This entails the specification of the metric g  or   which allows us to 
specify the restrictions that the points in 3R  lie on the torus.  Then, with respect to the metric 

 (which is the distortion of the metrical space resulting from our torque term  in the 
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stress energy tensor of the field equations), we have a curved space torus.  For 112 SST  , 
which defines two points  yx,   and  yx ,  in 2T , the difference is expressed as 
     2

122 yyxx   for the usual g .  For this metric 2T  is flat and does not lie on 3R .  
The reason for this condition is that for a two-dimensional, compact, connected surface to lie 
in 3R , it must have at least one non-zero curvature. 
 In defining a vector space on a sphere 2S , or torus T , we consider a simple 
observation of a two dimensional surface in 3R .  For example, a disk 222 ayx   for 0z  
has a top side and a bottom side, or a sphere 2S  has an inside and an outside, as does the 
torus 2T .  These two-sided surfaces are defined as orientable since we can use their two-
sided properties to define directions or orientations of vectors projected from their surfaces in 

3R .  Hence, we have two normals at each point, an inward, or outward pointing normal 
vector n̂ . 
 If we consider outward normal vectors only, i.e., one-sided or top-sided vector arrays 
at each point, then for short vectors, in analogy to a "crew cut" in a Euclidian space, no 
division or part will occur in 2S  space.  However, in a curvilinear vector space where the 
normal vectors are long and curved on a 2S spherical space, a non-uniformity or “part” will 
occur in this vector space of an 2S  space.  In the case of top-sided vectors, normal to a torus, 
both short and long vectors will not have a “part” or discontinuity in vector curvature because 
the “hairs” can be “combed” along the tori space continuously.  These normals can be curved 
in this topological space.  It is clear that all non-normal vectors to a sphere, either short or 
long, will have a “part”, but those which lie on the surface of a torus will not require a “part” 
but may be more densely packed at the curved surface of the inner ring of the torus as 
compared to the outer ring of the torus.  That is, the vector density is greater in the inner 
surface of the "hole" genus 1g  than in the outer region of the torus topology; clearly, 
particle density can change. Hence, we are guaranteed, in general, a diffeomorphic manifold 
for a torus in curved space, but not in general, for a spherical topology.  Therefore, for any 
non-Euclidian space, diffeomorphism holds for the torus topology.   
 
5. QUATERNIONS, GROUPS, AND ALLOWABLE SPATIAL STRUCTURES 

The complexified rotational dimensionality of quaternions may be the most 
appropriate approach to the description of twistor space in the context of a fundamental 
rotational force embedded in the structure of spacetime itself – spacetime torque [7]. We 
explore some of their interesting and related properties in this section. 

  
5.1 Quaternion Formalism and Simple Topological Spaces 

The quaternion group is isomorphic to the group with elements kkji  ,,,,1,1 , 
and 1222  kji  and jkiijkkij  ,, .  These properties operate similar to complex 
numbers where 1i .  In the case of the quaternions, kji ,,  can represent orthogonal 
dimensions in three-space.  The isomorphism condition states that the group elements of two 
groups can have a one-to-one correspondence, which is preserved under combinations of 
elements.  Then one can construct a group table as a square array; this is only necessary for 
higher order groups.  Quaternion groups have 2SU  or 3SU  subgroups and can be related to 

3O .  
Symmetric groups such as the quaternion group, which is a two-dimensional 

unimodular unitary group, are simply reducible groups.  Following Hamilton, we identify 
Euclidian four-space with the space of quaternions so that  }zkyixiH    where 
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4,,, Rzyxo    are elements of the Riemannian space 4R .  The Euclidian three-space is 
the subset of imaginary quaternion,  }zkyixiH im   where 3,, Rzyx   (see Section 3). 

 
5.2   Quaternions and Quantum Theory 

The key is that the Dirac string trick represents the properties of the symmetric group 
which is 2SU .  The 2SU  is isomorphic with the unit length of the quaternion in four-
dimensional space.  Quaternions, constructed by Hamilton, can represent rotations in three-
space, which can be performed without matrices.  They also obey non-Abelian algebra. 
Furthermore, correspondence of quaternions can be made to vectors and tensors.  Quaternions 
are a viable algebra for understanding rotations in three- and four-dimensional space.  Due to 
symmetry considerations in the Dirac electron theory, a 720o twist is required for the electron 
to return to the exact same quaternion state, where a 360o rotation will not and must be 
doubled.  

Quaternions are a complex number system with properties similar to the Rauscher [4] 
and Newman [5] complex eight-space.  In the usual notation, we start from any complex 
number, iba   where a  and b  are real, where aa 1  and ib  is imaginary.  The 
quaternion is written as kcjbiat    where ,,, bat  and c  are real and they are multiples 
of a real unit 1 and imaginary units ,, ji and k .  The following conditions, 

    ikjjk       (42a) 
    jikki       (42b) 
    kjiij       (42c) 

and  
            1222  kji     (42d) 
and  
     1ijk      (42e) 
also  
       1222  ijkkji     (42f) 
which yields a set of recursive relationships.  

Quaternions also have multiplicative properties similar to the complex Minkowski 
eight-space.  Let kcjbiatw   , then the conjugate of w  is w  and is given as 

kcjbiatw  , and the modulus is given as, ww  or, 
        2222 cbatww  .    (43)  
In fact, quaternions contain all the properties of complex numbers except for 

commutivity and thus comprise a non-Abelian algebra such as in the quantum theory.  Note 
that we have used a slightly different notation from Hamilton; that is, we write ,, jbia etc., 
instead of  bjai, , etc.  Quaternions are comprehensively explored by L.H. Kauffman. (see 
references [15, 43]).  

If 0t , then we have a pure imaginary quaternion or   
             kcjbiau       (44a) 

and then  
            2222 cbau        (44b) 
and are of a unit length   
             1222  cba        (45) 
so that 12 u .  Also for two pure imaginary quaternions 
            vuvuuv       (46) 
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as the dot and cross product of vector-like quantities in three-space.  The addition of the 
scalar component connotates a coordinate in the fourth dimension and hence we see the 
analogy of quaternions to the four-dimensional Minkowski space, where t  is time, and a  
corresponds to x , b  to  y , and c  to z .  What is unique then about the quaternionic "space" 
is that we have, for example, the permutation relations from equations (42a) to (42f),  and 
thus quaternions form a non-Euclidian set with the properties for pure quaternions uv  in 
equation (46).  We can form a set of pure quaternions on a two dimensional sphere of -1 in 
each of the three quaternion directions kji ,, .  Note that the complex Minkowski space is 
formed by one imaginary component i , multiplied by ,, yx  and z .  Now consider A  and B  
real numbers and u  is a unit length of a pure quaternion, then 12 u  and the powers of 

BuA   occupy the same form as powers of complex numbers.  That is, u  is 
indistinguishable from any other i1 .  

Let us now relate the quaternions to a complex number uBAZ  which we can write 
as  sincos RZ   or, in general,  

      unRnRZ nnn  sincos  .     (47)   
We can proceed with mapping of the thn roots of the quaternions.  Consider a space of 1N  
dimensions in which we represent 1N  space in the form of BuA  ,  where A  is a scalar 
and B  is a real number.  Now u  is a limit vector in an N space represented as NR  which is 
a Euclidian N space.  The vector-like quantity u  belongs to the unit sphere 1NS  about the 
origin NR  and is taken to have squares equal to minus one, or 12 u  for all vectors 1NS .  
In general, uv is not defined in a higher dimensional geometry such as the eight-dimensional 
Minkowski space of Rauscher [4] and Newman [5].  We can, however, create power maps of 
the form KZ n   where K  is a vector in 1NR  and  BuAZ   for 12 u  for all u in 

1NS .  With this approach, we can form classes of hypercomplex iterative processes with 
incursion in any arbitrary dimensional space.  This is the key to Kauffman's ability to relate 
the hypercomplex interations formed from quaternions to define higher dimensional fractal 
sets [43].  In particular, he utilizes this method to explore higher dimensional Mandelbrot and 
Julia sets.  We have explored the use of fractals in describing physical phenomena [44].  

One of the basic principles of the quaternion twist holds for the Dirac string trick for 
720o degree rotation.  A half cycle of twist, or 360 degrees, is expressed in terms of 
quaternions as 1ijk .  To return to +1, another twist through 360o must occur.  Spin must 
involve a preferred geometry in space [43].  The geometry of a preferred direction can be 
constructed by the magnitude of total electron transfer.  The Penrose spin approach is utilized 
to calculate angular momentum and  2SL  . 

  In terms of complex analysis involving quaternions, a single 180 degree turn is an 
instance of 1i  where 12 i  and represents a 360 degree right- or left-handed turn.  
The case for ii 3   is a non-trivial rotation and 14 i  returns the rotation of the electron 
and observer to their original states, through the 720 degree rotation – hence, the 
interpretation of the quaternionic formalism of one square root of 1   for every direction in 
three-dimensional space. 

We can consider the movement of the electron on the bounded space of a double torus 
stacked in such a way to have contiguous surfaces at the equatorial plane [7].  In order for the 
electron to pass through a 720 degree rotation and return the spin and chirality to its original 
state, the electron path must be different than that of a sphere.  A double torus is a likely 
topology and may result from a fundamental torquing force and Coriolis effect on the 
spacetime manifold of a polarized vacuum.   



 16 

In quantum theory, the symmetry group is the 2SU  group rather than the three-
dimensional space rotation group such as 

3O .  The 2SU group is isomorphic with the 
quaternions of unit length in four-dimensional space.  In references [44, 45], the group 
theoretic approach that relates spinors, twistors, and quaternions is detailed.  A spinor is a 
vector in two complex variables.  Antisymmetric conditions lead to the second twist 
involving the quaternions to create the cycle of the electron to its original state.  The 
antisymmetric conditions utilizing spin calculations can be conducted with Clebsch-Gordan 
coefficients, j3  and j6  symbols and other components of angular momentum [46].  Through 
these means, one can calculate the correct spin interactions involving multi-particle 
quaternion states.  We will not pursue this further here but it is a work in progress [44].  
Suffice it to say that the iterative properties, formulated here, have a variety of applications 
such as scalable inclusive relations from the quantum domain to astrophysical and 
cosmological systems [28].  

 
CONCLUSION 
 We have demonstrated a unique relationship of the dual torus topology to the spinor 
calculus, twistor algebra and the quaternionic formalism.  This topology appears to be 
ubiquitous in Nature and may result from spacetime torque and Coriolis forces generating 
spin/rotation at all scales, from galactic and stellar objects, supernovae, to the weather 
patterns in the Earth’s atmosphere, and may even be a key to defining an electron’s path.  The 
tori form appears to also occupy a role in unification models through the 8E group utilized in 
supersymmetry models. 
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